Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 299(12): 105448, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951305

ABSTRACT

Bacteria utilize quorum sensing (QS) to coordinate many group behaviors. As such, QS has attracted significant attention as a potential mean to attenuate bacterial infectivity without introducing selective pressure for resistance development. Streptococcus mitis, a human commensal, acts as a genetic diversity reservoir for Streptococcus pneumoniae, a prevalent human pathogen. S. mitis possesses a typical comABCDE competence regulon QS circuitry; however, the competence-stimulating peptide (CSP) responsible for QS activation and the regulatory role of the competence regulon QS circuitry in S. mitis are yet to be explored. We set out to delineate the competence regulon QS circuitry in S. mitis, including confirming the identity of the native CSP signal, evaluating the molecular mechanism that governs CSP interactions with histidine kinase receptor ComD leading to ComD activation, and defining the regulatory roles of the competence regulon QS circuitry in initiating various S. mitis phenotypes. Our analysis revealed important structure-activity relationship insights of the CSP signal and facilitated the development of novel CSP-based QS modulators. Our analysis also revealed the involvement of the competence regulon in modulating competence development and biofilm formation. Furthermore, our analysis revealed that the native S. mitis CSP signal can modulate QS response in S. pneumoniae. Capitalizing on this crosstalk, we developed a multispecies QS modulator that activates both the pneumococcus ComD receptors and the S. mitis ComD-2 receptor with high potencies. The novel scaffolds identified herein can be utilized to evaluate the effects temporal QS modulation has on S. mitis as it inhabits its natural niche.


Subject(s)
Quorum Sensing , Streptococcus mitis , Humans , Bacterial Proteins/metabolism , Histidine Kinase/metabolism , Peptides/metabolism , Phenotype , Regulon , Streptococcus mitis/genetics , Streptococcus mitis/metabolism , Streptococcus pneumoniae/genetics , Structure-Activity Relationship , Species Specificity
2.
Pept Sci (Hoboken) ; 115(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37397504

ABSTRACT

Bacteria utilize a cell density-dependent communication system called quorum sensing (QS) to coordinate group behaviors. In Gram-positive bacteria, QS involves the production of and response to auto-inducing peptide (AIP) signaling molecules to modulate group phenotypes, including pathogenicity. As such, this bacterial communication system has been identified as a potential therapeutic target against bacterial infections. More specifically, developing synthetic modulators derived from the native peptide signal paves a new way to selectively block the pathogenic behaviors associated with this signaling system. Moreover, rational design and development of potent synthetic peptide modulators allows in depth understanding of the molecular mechanisms that drive QS circuits in diverse bacterial species. Overall, studies aimed at understanding the role of QS in microbial social behavior could result in the accumulation of significant knowledge of microbial interactions, and consequently lead to the development of alternative therapeutic agents to treat bacterial infectivity. In this review, we discuss recent advances in the development of peptide-based modulators to target QS systems in Gram-positive pathogens, with a focus on evaluating the therapeutic potential associated with these bacterial signaling pathways.

3.
RSC Chem Biol ; 3(3): 301-311, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35359494

ABSTRACT

The prompt appearance of multiantibiotic-resistant bacteria necessitates finding alternative treatments that can attenuate bacterial infections while minimizing the rate of antibiotic resistance development. Streptococcus pneumoniae, a notorious human pathogen, is responsible for severe antibiotic-resistant infections. Its pathogenicity is influenced by a cell-density communication system, termed quorum sensing (QS). As a result, controlling QS through the development of peptide-based QS modulators may serve to attenuate pneumococcal infections. Herein, we set out to evaluate the impact of the introduction of bulkier, nonproteogenic side-chain residues on the hydrophobic binding face of CSP1 to optimize receptor-binding interactions in both of the S. pneumoniae specificity groups. Our results indicate that these substitutions optimize the peptide-protein binding interactions, yielding several pneumococcal QS modulators with high potency. Moreover, pharmacological evaluation of lead analogs revealed that the incorporation of nonproteogenic amino acids increased the peptides' half-life towards enzymatic degradation while remaining nontoxic. Overall, our data convey key considerations for SAR using nonproteogenic amino acids, which provide analogs with better pharmacological properties.

4.
Chembiochem ; 22(11): 1940-1947, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33644965

ABSTRACT

Streptococcus pneumoniae (pneumococcus) is a human pathobiont that causes drastic antibiotic-resistant infections and is responsible for millions of deaths universally. Pneumococcus pathogenicity relies on the competence-stimulating peptide (CSP)-mediated quorum-sensing (QS) pathway that controls competence development for genetic transformation and, consequently, the spread of antibiotic resistance and virulence genes. Modulation of QS in S. pneumoniae can therefore be used to enervate pneumococcal infectivity as well as minimize the susceptibility to resistance development. In this work, we sought to optimize the interaction of CSP1 with its cognate transmembrane histidine kinase receptor (ComD1) through substitution of proteogenic and nonproteogenic amino acids on the hydrophobic binding face of CSP1. The findings from this study not only provided additional structure-activity data that are significant in optimizing CSP1 potency, but also led to the development of potent QS modulators. These CSP-based QS modulators could be used as privileged scaffolds for the development of antimicrobial agents against pneumococcal infections.


Subject(s)
Peptides/metabolism , Streptococcus pneumoniae/metabolism , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Quorum Sensing , Streptococcus pneumoniae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...