Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mol Immunol ; 114: 378-388, 2019 10.
Article in English | MEDLINE | ID: mdl-31450183

ABSTRACT

Antimicrobial peptides (AMPs) play an important role in the innate immune response of vertebrates by creating a hostile environment for any invading pathogens. Piscidins are potent teleost specific AMPs, which have a broad spectrum activity. We have identified a novel piscidin active peptide, in the greater amberjack, Seriola dumerili, that consists of 25 aa, which forms an amphipathic helix with distinct hydrophobic and positively charged regions. Following homology and phylogenetic analysis the greater amberjack piscidin was deemed to belong to the group 3 family of piscidins. Piscidin was expressed constitutively at immune sites, with transcript level highest in the spleen and gut, at an intermediate level in the gills and lowest in the head kidney. Following in vivo stimulation with PAMPs (poly I:C, LPS and flagellin) piscidin transcript level increased in gills in response to flagellin, in gut and spleen in response to poly I:C, and in head kidney in response to poly I:C, LPS and flagellin. Head kidney and spleen cells were then isolated from greater amberjack and incubated with each of the PAMPs for 4, 12 and 24 h. Piscidin expression was unchanged at 4 and 12 h post PAMP stimulation in head kidney cells but at 24 h transcript level was markedly upregulated compared to control (unstimulated) cells, especially with the bacterial PAMPs. In contrast, spleen cells upregulated piscidin expression by 4 h post stimulation with poly I:C and flagellin, and remained upregulated to 24 h with flagellin exposure, but had returned to baseline levels by 12 h using poly I:C. To determine if piscidin expression could be modulated by diet, greater amberjack were fed diets supplemented with MOS and cMOS for 30 days when transcript level was determined. It was found that MOS supplemented diets increased expression in the spleen, cMOS supplemented diets upregulated transcript levels in the gills and head kidney, whilst a diet containing both MOS and cMOS upregulated transcript in the gut, when compared to fish fed the control diet. Finally, a synthetic greater amberjack piscidin was produced and showed bacteriostatic activity against a number of bacterial strains, including both Gram positive and Gram negative fish pathogens.


Subject(s)
Fish Proteins/genetics , Fish Proteins/immunology , Perciformes/genetics , Perciformes/immunology , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Base Sequence , Gills/immunology , Head Kidney/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Phylogeny , Sequence Alignment
2.
Fish Shellfish Immunol ; 86: 35-45, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30339845

ABSTRACT

The main objective of this study was to determine the effect of two forms of mannan oligosaccharides (MOS: Bio-Mos® and cMOS: Actigen®, Alltech Inc, USA) and their combination on greater amberjack (Seriola dumerili) growth performance and feed efficiency, immune parameters and resistance against ectoparasite (Neobenedenia girellae) infection. Fish were fed for 90 days with 5 g kg-1 MOS, 2 g kg-1 cMOS or a combination of both prebiotics, in a Seriola commercial base diet (Skretting, Norway). At the end of the feeding period, no differences were found in growth performance or feed efficiency. Inclusion of MOS also had no effect on lysozyme activity in skin mucus and serum, but the supplementation of diets with cMOS induced a significant increase of serum bactericidal activity. Dietary cMOS also reduced significantly greater amberjack skin parasite levels, parasite total length and the number of parasites detected per unit of fish surface following a cohabitation challenge with N. girellae, whereas no effect of MOS was detected on these parameters. Of 17 immune genes studied cMOS dietary inclusion up-regulated hepcidin, defensin, Mx protein, interferon-γ (IFNγ), mucin-2 (MUC-2), interleukin-1ß (IL-1B), IL-10 and immunoglobulin-T (IgT) gene expression in gills and/or skin. MOS supplementation had a larger impact on spleen and head kidney gene expression, where piscidin, defensin, iNOS, Mx protein, interferons, IL-1ß, IL-10, IL-17 and IL-22 were all upregulated. In posterior gut dietary MOS and cMOS both induced IL-10, IgM and IgT, but with MOS also increasing piscidin, MUC-2, and IL-1ß whilst cMOS induced hepcidin, defensin and IFNγ. In general, the combination of MOS and cMOS resulted in fewer or lower increases in all tissues, possibly due to an overstimulation effect. The utilization of cMOS at the dose used here has clear benefits on parasite resistance in greater amberjack, linked to upregulation of a discrete set of immune genes in mucosal tissues.


Subject(s)
Dietary Supplements , Ectoparasitic Infestations/veterinary , Fishes/immunology , Gene Expression Regulation/immunology , Oligosaccharides/pharmacology , Animal Feed , Animals , Diet/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/parasitology , Gene Expression Regulation/drug effects , Prebiotics , Random Allocation , Trematoda , Trematode Infections/immunology , Trematode Infections/parasitology , Trematode Infections/veterinary , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...