Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 277(51): 50176-82, 2002 Dec 20.
Article in English | MEDLINE | ID: mdl-12364327

ABSTRACT

The second step of glycosylphosphatidylinositol anchor biosynthesis in all eukaryotes is the conversion of D-GlcNAcalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol (GlcNAc-PI) to d-GlcNalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol by GlcNAc-PI de-N-acetylase. The genes encoding this activity are PIG-L and GPI12 in mammals and yeast, respectively. Fragments of putative GlcNAc-PI de-N-acetylase genes from Trypanosoma brucei and Leishmania major were identified in the respective genome project data bases. The full-length genes TbGPI12 and LmGPI12 were subsequently cloned, sequenced, and shown to complement a PIG-L-deficient Chinese hamster ovary cell line and restore surface expression of GPI-anchored proteins. A tetracycline-inducible bloodstream form T. brucei TbGPI12 conditional null mutant cell line was created and analyzed under nonpermissive conditions. TbGPI12 mRNA levels were reduced to undetectable levels within 8 h of tetracycline removal, and the cells died after 3-4 days. This demonstrates that TbGPI12 is an essential gene for the tsetse-transmitted parasite that causes Nagana in cattle and African sleeping sickness in humans. It also validates GlcNAc-PI de-N-acetylase as a potential drug target against these diseases. Washed parasite membranes were prepared from the conditional null mutant parasites after 48 h without tetracycline. These membranes were shown to be greatly reduced in GlcNAc-PI de-N-acetylase activity, but they retained their ability to make GlcNAc-PI and to process d-GlcNalpha1-6-d-myo-inositol-1-HPO(4)-sn-1,2-diacylglycerol to later glycosylphosphatidylinositol intermediates. These results suggest that the stabilities of other glycosylphosphatidylinositol pathway enzymes are not dependent on GlcNAc-PI de-N-acetylase levels.


Subject(s)
Amidohydrolases/genetics , Glycosylphosphatidylinositols/biosynthesis , Leishmania major/genetics , Trypanosoma brucei brucei/genetics , Trypanosomiasis, African/parasitology , Amino Acid Sequence , Animals , Blotting, Northern , Blotting, Southern , CHO Cells , Cell-Free System , Chromatography, High Pressure Liquid , Cloning, Molecular , Cricetinae , Genetic Complementation Test , Models, Genetic , Molecular Sequence Data , Mutation , Open Reading Frames , Sequence Homology, Amino Acid , Time Factors
2.
Proc Natl Acad Sci U S A ; 99(9): 5884-9, 2002 Apr 30.
Article in English | MEDLINE | ID: mdl-11983889

ABSTRACT

The tsetse fly-transmitted protozoan parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and the cattle disease Nagana. The bloodstream form of the parasite uses a dense cell-surface coat of variant surface glycoprotein to escape the innate and adaptive immune responses of the mammalian host and a highly glycosylated transferrin receptor to take up host transferrin, an essential growth factor. These glycoproteins, as well as other flagellar pocket, endosomal, and lysosomal glycoproteins, are known to contain galactose. The parasite is unable to take up galactose, suggesting that it may depend on the action of UDP-glucose 4'-epimerase for the conversion of UDP-Glc to UDP-Gal and subsequent incorporation of galactose into glycoconjugates via UDP-Gal-dependent galactosyltransferases. In this paper, we describe the cloning of T. brucei galE, encoding T. brucei UDP-Glc-4'-epimerase, and functional characterization by complementation of a galE-deficient Escherichia coli mutant and enzymatic assay of recombinant protein. A tetracycline-inducible conditional galE null mutant of T. brucei was created using a transgenic parasite expressing the TETR tetracycline repressor protein gene. Withdrawal of tetracycline led to a cessation of cell division and substantial cell death, demonstrating that galactose metabolism in T. brucei proceeds via UDP-Glc-4'-epimerase and is essential for parasite growth. After several days without tetracycline, cultures spontaneously recovered. These cells were shown to have undergone a genetic rearrangement that deleted the TETR gene. The results show that enzymes and transporters involved in galactose metabolism may be considered as potential therapeutic targets against African trypanosomiasis.


Subject(s)
Galactose/metabolism , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/physiology , Alleles , Amino Acid Sequence , Animals , Blotting, Northern , Blotting, Southern , Cloning, Molecular , Dose-Response Relationship, Drug , Ethidium/pharmacology , Genetic Complementation Test , Kinetics , Molecular Sequence Data , Mutation , Plasmids/metabolism , Polymerase Chain Reaction , Recombinant Proteins/metabolism , Response Elements , Sequence Homology, Amino Acid , Tetracycline/pharmacology , Time Factors , UDPglucose 4-Epimerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...