Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 171910, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522549

ABSTRACT

Quantifying drivers contributing to air quality improvements is crucial for pollution prevention and optimizing local policies. Despite advances in machine learning for air quality analysis, their limited interpretability hinders attribution on global and local scales, vital for informed city management. Our study introduces an innovative framework quantifying socioeconomic and natural impacts on mitigation of particulate matter pollution in 31 Chinese major cities from 2014 to 2021. Two indices, formulated based on the additivity of Shapley additive explanations, are proposed to measure driver contributions globally and locally. Our analysis explores the self-contained and interactive effects of these drivers on particulate levels, pinpointing critical threshold values where these drivers trigger shifts in particulate matter levels. It is revealed that SO2, NOx, and dust emission reductions collectively account for 51.58 % and 51.96 % of PM2.5 and PM10 decreases at the global level. Moreover, our findings unveil a significant heterogeneity in driver contributions to pollutant mitigation across distinct cities, which can be instrumental in crafting location-specific policy recommendations.

2.
J Environ Manage ; 354: 120394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38412729

ABSTRACT

Algal blooms, exacerbated by climate change and eutrophication, have emerged as a global concern. In this study, we introduce a novel interpretable machine learning (ML) workflow tailored for investigating the dynamics of algal populations in grass-type lakes, Liangzi lake. Utilizing seven ML methods and incorporating the covariance matrix adaptation evolution strategy (CMA-ES), we predict algal density across three distinct time periods, resulting in the construction of a total of 30 ML models. The CMA-ES-CatBoost model consistently demonstrates superior predictive accuracy and generalization capability across these periods. Through the collective validation of various interpretable tools, we identify water temperature and permanganate index as the two most critical water quality parameters (WQIs) influencing algal density in Liangzi Lake. Additionally, we quantify the independent and interactive effects of WQIs on algal density, pinpointing key thresholds and trends. Furthermore, we determine the minimum combination of WQIs that achieves near-optimal predictive performance, striking a balance between accuracy and cost-effectiveness. These findings offer a scientific and economically efficient foundation for governmental agencies to formulate strategies for water quality management and sustainable development.


Subject(s)
Lakes , Poaceae , Water Quality , Eutrophication , Machine Learning , Population Dynamics , Environmental Monitoring , China
3.
Math Biosci ; 365: 109075, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37734536

ABSTRACT

Understanding how tipping points arise is critical for population protection and ecosystem robustness. This work evaluates the impact of environmental stochasticity on the emergence of tipping points in a predator-prey system subject to the Allee effect and Holling type IV functional response, modeling an environment in which the prey has high group cohesion. We analyze the relationship between stochasticity and the probability and time that predator and prey populations in our model tip between different steady states. We evaluate the safety from extinction of different population values for each species, and accordingly assign extinction warning levels to these population values. Our analysis suggests that the effects of environmental stochasticity on tipping phenomena are scenario-dependent but follow a few interpretable trends. The probability of tipping towards a steady state in which one or both species go extinct generally monotonically increased with noise intensity, while the probability of tipping towards a more favorable steady state (in which more species were viable) usually peaked at intermediate noise intensity. For tipping between two equilibria where a given species was at risk of extinction in one equilibrium but not the other, noise affecting that species had greater impact on tipping probability than noise affecting the other species. Noise in the predator population facilitated quicker tipping to extinction equilibria, whereas prey noise instead often slowed down extinction. Changes in warning level for initial population values due to noise were most apparent near attraction basin boundaries, but noise of sufficient magnitude (especially in the predator population) could alter risk even far away from these boundaries. Our model provides critical theoretical insights for the conservation of population diversity: management criteria and early warning signals can be developed based on our results to keep populations away from destructive critical thresholds.

4.
J Theor Biol ; 570: 111522, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37210068

ABSTRACT

The successive emergence of SARS-CoV-2 mutations has led to an unprecedented increase in COVID-19 incidence worldwide. Currently, vaccination is considered to be the best available solution to control the ongoing COVID-19 pandemic. However, public opposition to vaccination persists in many countries, which can lead to increased COVID-19 caseloads and hence greater opportunities for vaccine-evasive mutant strains to arise. To determine the extent that public opinion regarding vaccination can induce or hamper the emergence of new variants, we develop a model that couples a compartmental disease transmission framework featuring two strains of SARS-CoV-2 with game theoretical dynamics on whether or not to vaccinate. We combine semi-stochastic and deterministic simulations to explore the effect of mutation probability, perceived cost of receiving vaccines, and perceived risks of infection on the emergence and spread of mutant SARS-CoV-2 strains. We find that decreasing the perceived costs of being vaccinated and increasing the perceived risks of infection (that is, decreasing vaccine hesitation) will decrease the possibility of vaccine-resistant mutant strains becoming established by about fourfold for intermediate mutation rates. Conversely, we find increasing vaccine hesitation to cause both higher probability of mutant strains emerging and more wild-type cases after the mutant strain has appeared. We also find that once a new variant has emerged, perceived risk of being infected by the original variant plays a much larger role than perceptions of the new variant in determining future outbreak characteristics. Furthermore, we find that rapid vaccination under non-pharmaceutical interventions is a highly effective strategy for preventing new variant emergence, due to interaction effects between non-pharmaceutical interventions and public support for vaccination. Our findings indicate that policies that combine combating vaccine-related misinformation with non-pharmaceutical interventions (such as reducing social contact) will be the most effective for avoiding the establishment of harmful new variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccination Hesitancy , Pandemics , Vaccination
5.
J Math Biol ; 86(2): 31, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36637536

ABSTRACT

We incorporate stoichiometry (the balance of key elements) into an intraguild predation (IGP) model. Theoretical and numerical results show that our system exhibits complex dynamics, including chaos and multiple types of both bifurcations and bistability. Types of bifurcation present include saddle-node, Hopf, and transcritical bifurcations, and types of bistability present include node-node, node-cycle, and cycle-cycle bistability; cycle-cycle bistability has never been observed in IGP ordinary differential equation models. Stoichiometry can stabilize or destabilize the system via the disappearance or appearance of chaos. The species represented in the model can coexist for moderate levels of light intensity and nutrient availability. When the amount of light or nutrients present is extremely high or low, coexistence of the species becomes impossible, potentially harming biodiversity. Interestingly, stoichiometry can facilitate the re-emergence of severely endangered species as light intensity increases. In a temporally changing environment, the system can jump between different unstable states following changes in light intensity, with the trajectory followed depending strongly on initial conditions.


Subject(s)
Ecosystem , Food Chain , Animals , Predatory Behavior , Biodiversity , Endangered Species , Models, Biological , Population Dynamics
6.
Int J Infect Dis ; 121: 195-202, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35584743

ABSTRACT

OBJECTIVES: Because of the spread of the Omicron variant, many countries have experienced COVID-19 case numbers unseen since the start of the pandemic. We aimed to compare the epidemiological characteristics of Omicron with previous variants and different strains of influenza to provide context for public health responses. METHODS: We developed transmission models for SARS-CoV-2 variants and influenza, in which transmission, death, and vaccination rates were taken to be time-varying. We fit our model based on publicly available data in South Africa, the United States, and Canada. We used this model to evaluate the relative transmissibility and mortality of Omicron compared with previous variants and influenza. RESULTS: We found that Omicron is more transmissible and less fatal than both seasonal and 2009 H1N1 influenza and the Delta variant; these characteristics make Omicron epidemiologically more similar to influenza than it is to Delta. We estimate that as of February 7, 2022, booster doses have prevented 4.29×107 and 1.14×106 Omicron infections in the United States and Canada, respectively. CONCLUSION: Our findings indicate that the high infectivity of Omicron will keep COVID-19 endemic, similar to influenza. However, because of Omicron's lower fatality rate, our work suggests that human populations living with SARS-CoV-2 are most likely.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Mutation , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/prevention & control , Influenza, Human/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology
7.
Bull Math Biol ; 84(4): 46, 2022 02 19.
Article in English | MEDLINE | ID: mdl-35182222

ABSTRACT

Overfishing has the potential to severely disrupt coral reef ecosystems worldwide, while harvesting at more sustainable levels instead can boost fish yield without damaging reefs. The dispersal abilities of reef species mean that coral reefs form highly connected environments, and the viability of reef fish populations depends on spatially explicit processes such as the spillover effect and unauthorized harvesting inside marine protected areas. However, much of the literature on coral conservation and management has only examined overfishing on a local scale, without considering how different spatial patterns of fishing levels can affect reef health both locally and regionally. Here, we simulate a coupled human-environment model to determine how coral and herbivorous reef fish respond to overfishing across multiple spatial scales. We find that coral and reef fish react in opposite ways to habitat fragmentation driven by overfishing, and that a potential spillover effect from marine protected areas into overfished patches helps coral populations far less than it does reef fish. We also show that ongoing economic transitions from fishing to tourism have the potential to revive fish and coral populations over a relatively short timescale, and that large-scale reef recovery is possible even if these transitions only occur locally. Our results show the importance of considering spatial dynamics in marine conservation efforts and demonstrate the ability of economic factors to cause regime shifts in human-environment systems.


Subject(s)
Anthozoa , Animals , Conservation of Natural Resources , Coral Reefs , Ecosystem , Fisheries , Fishes , Mathematical Concepts , Models, Biological
8.
J Theor Biol ; 523: 110676, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33753122

ABSTRACT

Spatial synchrony of population fluctuations is an important tool for predicting regional stability. Its application to natural systems is still limited by the complexity of ecological time series displaying great variation in the frequency and amplitude of their fluctuations, which are not fully resolved by current ecological theories of spatial synchrony. In particular, while environmental fluctuations and limited dispersal can each control the dynamics of frequency and amplitude of population fluctuations, ecological theories of spatial synchrony still need to resolve their role on synchrony and stability in heterogeneous metacommunities. Here, we adopt a heterogeneous predator-prey metacommunity model and study the response of dispersal-driven phase locking and frequency modulation to among-patch heterogeneity in carrying capacity. We find that frequency modulation occurs at intermediate values of dispersal and habitat heterogeneity. We also show how frequency modulation can emerge in metacommunities of autonomously oscillating populations as well as through the forcing of local communities at equilibrium. Frequency modulation was further found to produce temporal variation in population amplitudes, promoting local and regional stability through cyclic patterns of local and regional variability. Our results highlight the importance of approaching spatial synchrony as a non-stationary phenomenon, with implications for the assessment and interpretation of spatial synchrony observed in experimental and natural systems.


Subject(s)
Models, Biological , Predatory Behavior , Animals , Ecosystem , Population Dynamics
9.
Evol Appl ; 12(7): 1475-1486, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31417628

ABSTRACT

Maladaptation is widespread in natural populations. However, maladaptation has most often been associated with absolute population decline in local habitats rather than on a spectrum of relative fitness variation that can assist natural populations in their persistence at larger regional scales. We report results from a field experiment that tested for relative maladaptation between-pond habitats with spatial heterogeneity and (a)symmetric selection in pH. In the experiment, we quantified relative maladaptation in a copepod metapopulation as a mismatch between the mean population phenotype and the optimal trait value that would maximize mean population fitness under either stable or fluctuating pH environmental conditions. To complement the field experiment, we constructed a metapopulation model that addressed both relative (distance from the optimum) and absolute (negative population growth) maladaptation, with the aim of forecasting maladaptation to pH at the regional scale in relation to spatial structure (environmental heterogeneity and connectivity) and temporal environmental fluctuations. The results from our experiment indicated that maladaptation to pH at the regional scale depended on the asymmetry of the fitness surface at the local level. The results from our metapopulation model revealed how dispersal and (a)symmetric selection can operate on the fitness surface to maintain maladaptive phenotype-environment mismatch at local and regional scales in a metapopulation. Environmental stochasticity resulted in the maintenance of maladaptation that was robust to dispersal, but also revealed an interaction between the asymmetry in selection and environmental correlation. Our findings emphasize the importance of maladaptation for planning conservation strategies that can support adaptive potential in fragmented and changing landscapes.

SELECTION OF CITATIONS
SEARCH DETAIL
...