Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 9(16): e14972, 2021 08.
Article in English | MEDLINE | ID: mdl-34409768

ABSTRACT

Excessive adiposity is associated with altered oxygen tension and comorbidities in humans. In contrast, marine mammals have high adiposity with no apparent detrimental effects. However, partial pressure of oxygen (Po2 ) in their subcutaneous adipose tissue (blubber) and its relationship with fatness have not been reported. We measured Po2 and temperature at different blubber depths in 12 healthy juvenile grey seals. Fatness was estimated from blubber thickness and morphometric parameters. Simultaneously, we monitored breathing pattern; heart rate and arterial blood saturation with a pulse oximeter; and relative changes in total hemoglobin, deoxyhemoglobin, and oxyhemoglobin in blubber capillaries using near-infrared spectroscopy (NIRS) as proxies for local oxygenation changes. Blubber Po2 ranged from 14.5 to 71.4 mmHg (39.2 ± 14.1 mmHg), which is similar to values reported in other species. Blubber Po2 was strongly and negatively associated with fatness (LME: p < 0.0001, R2marginal = 0.53, R2conditional = 0.64, n = 10), but not with blubber depth. No other parameters explained variability in Po2 , suggesting arterial blood and local oxygen delivery did not vary within and between measurements. The fall in blubber Po2 with increased fatness in seals is consistent with other animal models of rapid fat deposition. However, the Po2  levels at which blubber becomes hypoxic and consequences of low blubber Po2 for its health and function, particularly in very fat individuals, remain unknown. How seals avoid detrimental effects of low oxygen tension in adipose tissue, despite their high and fluctuating adiposity, is a fruitful avenue to explore.


Subject(s)
Adiposity , Oxygen Consumption , Seals, Earless/metabolism , Subcutaneous Fat/metabolism , Animals , Hemoglobins/metabolism , Oxygen/metabolism , Respiration
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1830): 20200224, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34121458

ABSTRACT

Sensory ecology and physiology of free-ranging animals is challenging to study but underpins our understanding of decision-making in the wild. Existing non-invasive human biomedical technology offers tools that could be harnessed to address these challenges. Functional near-infrared spectroscopy (fNIRS), a wearable, non-invasive biomedical imaging technique measures oxy- and deoxyhaemoglobin concentration changes that can be used to detect localized neural activation in the brain. We tested the efficacy of fNIRS to detect cortical activation in grey seals (Halichoerus grypus) and identify regions of the cortex associated with different senses (vision, hearing and touch). The activation of specific cerebral areas in seals was detected by fNIRS in responses to light (vision), sound (hearing) and whisker stimulation (touch). Physiological parameters, including heart and breathing rate, were also extracted from the fNIRS signal, which allowed neural and physiological responses to be monitored simultaneously. This is, to our knowledge, the first time fNIRS has been used to detect cortical activation in a non-domesticated or laboratory animal. Because fNIRS is non-invasive and wearable, this study demonstrates its potential as a tool to quantitatively investigate sensory perception and brain function while simultaneously recording heart rate, tissue and arterial oxygen saturation of haemoglobin, perfusion changes and breathing rate in free-ranging animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.


Subject(s)
Brain Mapping/instrumentation , Brain/physiology , Physiology/instrumentation , Seals, Earless/physiology , Animals
3.
Physiol Biochem Zool ; 94(3): 152-161, 2021.
Article in English | MEDLINE | ID: mdl-33710938

ABSTRACT

AbstractHarbor seals (Phoca vitulina) live in cold temperate or polar seas and molt annually, renewing their fur over a period of approximately 4 wk. Epidermal processes at this time require a warm skin; therefore, to avoid an excessive energy cost at sea during the molt, harbor seals and many other pinnipeds increase the proportion of time they are hauled out on land. We predicted that metabolic rate during haul-out would be greater during the molt to sustain an elevated skin temperature in order to optimize skin and hair growth. To examine this, we measured post-haul-out oxygen consumption (V˙O2) in captive harbor seals during molt and postmolt periods. We recorded greater V˙O2 of seals while they were molting than when the molt was complete. Post-haul-out V˙O2 increased faster and reached a greater maximum during the first 40 min. Thereafter, V˙O2 decreased but still remained greater, suggesting that while metabolic rate was relatively high throughout haul-outs, it was most pronounced in the first 40 min. Air temperature, estimated heat increment of feeding, and mass also explained 15.5% of V˙O2 variation over 180 min after haul-out, suggesting that the environment, feeding state, and body size influenced the metabolic rate of individual animals. These results show that molting seals have greater metabolic rates when hauled out, especially during the early stages of the haul-out period. As a consequence, human disturbance that changes the haul-out behavior of molting seals will increase their energy costs and potentially extend the duration of the molt.


Subject(s)
Energy Metabolism/physiology , Molting/physiology , Phoca/physiology , Animals , Feeding Behavior , Male , Oxygen Consumption/physiology , Seasons
4.
PLoS Biol ; 17(6): e3000306, 2019 06.
Article in English | MEDLINE | ID: mdl-31211787

ABSTRACT

Investigation of marine mammal dive-by-dive blood distribution and oxygenation has been limited by a lack of noninvasive technology for use in freely diving animals. Here, we developed a noninvasive near-infrared spectroscopy (NIRS) device to measure relative changes in blood volume and haemoglobin oxygenation continuously in the blubber and brain of voluntarily diving harbour seals. Our results show that seals routinely exhibit preparatory peripheral vasoconstriction accompanied by increased cerebral blood volume approximately 15 s before submersion. These anticipatory adjustments confirm that blood redistribution in seals is under some degree of cognitive control that precedes the mammalian dive response. Seals also routinely increase cerebral oxygenation at a consistent time during each dive, despite a lack of access to ambient air. We suggest that this frequent and reproducible reoxygenation pattern, without access to ambient air, is underpinned by previously unrecognised changes in cerebral drainage. The ability to track blood volume and oxygenation in different tissues using NIRS will facilitate a more accurate understanding of physiological plasticity in diving animals in an increasingly disturbed and exploited environment.


Subject(s)
Diving Reflex/physiology , Diving/physiology , Spectroscopy, Near-Infrared/instrumentation , Animals , Mammals/physiology , Oxygen/blood , Oxygen/metabolism , Oxygen Consumption/physiology , Phoca/physiology , Spectroscopy, Near-Infrared/methods , Wearable Electronic Devices
5.
Am J Physiol Regul Integr Comp Physiol ; 311(4): R788-R796, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27581813

ABSTRACT

An animal-borne blood sampler with data-logging functions was developed for phocid seals, which collected two blood samples for the comparison of endocrinological/biochemical parameters under two different conditions. The sampler can be triggered by preset hydrostatic pressure, acceleration (descending or ascending), temperature, and time, and also manually by light. The sampling was reliable with 39/50 (78%) successful attempts to collect blood samples. Contamination of fluids in the tubing to the next blood sample was <1%, following the prior clearance of the tubing to a waste syringe. In captive harbor seals (Phoca vitulina), the automated blood-sampling method was less stressful than direct blood withdrawal, as evidenced by lower levels of stress hormones (P < 0.05 for ACTH and P = 0.078 for cortisol). HPLC analyses showed that both cortisol and cortisone were circulating in seal blood. Using the sampler, plasma levels of cardiovascular hormones, atrial natriuretic peptide (ANP), AVP, and ANG II were compared in grey seals (Halichoerus grypus), between samples collected when the animals were on land and in the water. HPLC analyses determined that [Met12] ANP (1-28) and various forms of angiotensins (ANG II, III, and IV) were circulating in seal blood. Although water immersion profoundly changes the plasma levels of cardiovascular hormones in terrestrial mammals, there were only tendencies toward an increase in ANP (P = 0.069) and a decrease in AVP (P = 0.074) in the seals. These results suggest that cardiovascular regulation in phocid seals may have undergone adaptation during evolution of the carnivore to a semiaquatic lifestyle.


Subject(s)
Atrial Natriuretic Factor/blood , Blood Specimen Collection/instrumentation , Hormones/blood , Monitoring, Ambulatory/instrumentation , Seals, Earless/blood , Stress, Physiological/physiology , Animals , Cardiovascular System/metabolism , Equipment Design , Equipment Failure Analysis , Female , Information Storage and Retrieval , Male , Reproducibility of Results , Sensitivity and Specificity , Syringes
SELECTION OF CITATIONS
SEARCH DETAIL
...