Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
AJNR Am J Neuroradiol ; 43(12): 1817-1823, 2022 12.
Article in English | MEDLINE | ID: mdl-36396336

ABSTRACT

BACKGROUND AND PURPOSE: Multidynamic multiecho sequence-based imaging enables investigators to reconstruct multiple MR imaging contrasts on the basis of a single scan. This study investigated the feasibility of synthetic MRI-based WM signal suppression (syWMSS), a synthetic inversion recovery approach in which a short TI suppresses myelin-related signals, for the identification of early myelinating brainstem pathways. MATERIALS AND METHODS: Thirty-one cases of neonatal MR imaging, which included multidynamic multiecho data and conventionally acquired T1- and T2-weighted sequences, were analyzed. The multidynamic multiecho postprocessing software SyMRI was used to generate syWMSS data (TR/TE/TI = 3000/5/410 ms). Two raters discriminated early myelinating brainstem pathways (decussation of the superior cerebellar peduncle, medial lemniscus, central tegmental tract, and medial longitudinal fascicle [the latter 3 assessed at the level of the pons]) on syWMSS data and reference standard contrasts. RESULTS: On the basis of syWMSS data, the decussation of the superior cerebellar peduncle (31/31); left/right medial lemniscus (31/31; 30/31); left/right central tegmental tract (19/31; 20/31); and left/right medial longitudinal fascicle (30/31) were reliably identified by both raters. On the basis of T1-weighted contrasts, the decussation of the superior cerebellar peduncle (14/31); left/right medial lemniscus (22/31; 16/31); left/right central tegmental tract (1/31); and left/right medial longitudinal fascicle (9/31; 8/31) were reliably identified by both raters. On the basis of T2-weighted contrasts, the decussation of the superior cerebellar peduncle (28/31); left/right medial lemniscus (16/31; 12/31); left/right central tegmental tract (23/31; 18/31); and left/right medial longitudinal fascicle (15/31; 14/31) were reliably identified by both raters. CONCLUSIONS: syWMSS data provide a feasible imaging technique with which to study early myelinating brainstem pathways. MR imaging approaches that use myelin signal suppression contribute to a more sensitive assessment of myelination patterns at early stages of cerebral development.


Subject(s)
Magnetic Resonance Imaging , White Matter , Infant, Newborn , Humans , Magnetic Resonance Imaging/methods , Brain Stem/diagnostic imaging , Pons , Myelin Sheath
2.
AJNR Am J Neuroradiol ; 42(11): 2086-2093, 2021 11.
Article in English | MEDLINE | ID: mdl-34503947

ABSTRACT

BACKGROUND AND PURPOSE: On the basis of a single multidynamic multiecho sequence acquisition, SyMRI generates a variety of quantitative image data that can characterize tissue-specific properties. The aim of this retrospective study was to evaluate the feasibility of SyMRI for the qualitative and quantitative assessment of fetal brain maturation. MATERIALS AND METHODS: In 52 fetuses, multidynamic multiecho sequence acquisitions were available. SyMRI was used to perform multidynamic multiecho-based postprocessing. Fetal brain maturity was scored qualitatively on the basis of SyMRI-generated MR imaging data. The results were compared with conventionally acquired T1-weighted/T2-weighted contrasts as a standard of reference. Myelin-related changes in T1-/T2-relaxation time/relaxation rate, proton density, and MR imaging signal intensity of the developing fetal brain stem were measured. A Pearson correlation analysis was used to detect correlations between the following: 1) the gestational age at MR imaging and the fetal brain maturity score, and 2) the gestational age at MR imaging and the quantitative measurements. RESULTS: SyMRI provided images of sufficient quality in 12/52 (23.08%) (range, 23 + 6-34 + 0) fetal multidynamic multiecho sequence acquisitions. The fetal brain maturity score positively correlated with gestational age at MR imaging (SyMRI: r = 0.915, P < .001/standard of reference: r = 0.966, P < .001). Myelination-related changes in the T2 relaxation time/T2 relaxation rate of the medulla oblongata significantly correlated with gestational age at MR imaging (T2-relaxation time: r = -0.739, P = .006/T2-relaxation rate: r = 0.790, P = .002). CONCLUSIONS: Fetal motion limits the applicability of multidynamic multiecho-based postprocessing. However, SyMRI-generated image data of sufficient quality enable the qualitative assessment of maturity-related changes of the fetal brain. In addition, quantitative T2 relaxation time/T2 relaxation rate mapping characterizes myelin-related changes of the brain stem prenatally. This approach, if successful, opens novel possibilities for the evaluation of structural and biochemical aspects of fetal brain maturation.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Mapping , Contrast Media , Humans , Retrospective Studies
3.
Radiologe ; 57(4): 309-326, 2017 Apr.
Article in German | MEDLINE | ID: mdl-28324121

ABSTRACT

Impingement syndrome of the ankle is a clinical diagnosis caused posttraumatically by overuse due to repetitive mechanical loading or the presence of predisposing anatomical variants. Ankle impingement syndrome is characterized by chronic pain and limited range of movement caused by mechanical compression of bony or soft tissues within the joint compartments. Ankle impingement syndrome is classified according to the various anatomical locations around the tibiotalar joint as anterior, anterolateral, anteromedial, posterior or posteromedial. Various imaging modalities are helpful in confirming the clinical diagnosis of ankle impingement. Radiography and computed tomography are used to identify bony abnormalities and intra-articular loose bodies. Magnetic resonance imaging is the modality of choice to demonstrate pathological soft tissue changes, bone marrow edema and osteochondral lesions. Dynamic sonography can identify the anatomical structures leading to impingement during movement.


Subject(s)
Ankle Joint/diagnostic imaging , Joint Diseases/diagnostic imaging , Ankle/diagnostic imaging , Ankle Joint/abnormalities , Humans , Joint Diseases/etiology , Magnetic Resonance Imaging , Syndrome , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...