Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5790, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987542

ABSTRACT

With the success of immunotherapy in cancer, understanding the tumor immune microenvironment (TIME) has become increasingly important; however in pediatric brain tumors this remains poorly characterized. Accordingly, we developed a clinical immune-oncology gene expression assay and used it to profile a diverse range of 1382 samples with detailed clinical and molecular annotation. In low-grade gliomas we identify distinct patterns of immune activation with prognostic significance in BRAF V600E-mutant tumors. In high-grade gliomas, we observe immune activation and T-cell infiltrates in tumors that have historically been considered immune cold, as well as genomic correlates of inflammation levels. In mismatch repair deficient high-grade gliomas, we find that high tumor inflammation signature is a significant predictor of response to immune checkpoint inhibition, and demonstrate the potential for multimodal biomarkers to improve treatment stratification. Importantly, while overall patterns of immune activation are observed for histologically and genetically defined tumor types, there is significant variability within each entity, indicating that the TIME must be evaluated as an independent feature from diagnosis. In sum, in addition to the histology and molecular profile, this work underscores the importance of reporting on the TIME as an essential axis of cancer diagnosis in the era of personalized medicine.


Subject(s)
Brain Neoplasms , Glioma , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Child , Glioma/immunology , Glioma/genetics , Glioma/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Female , Male , Adolescent , Gene Expression Regulation, Neoplastic , Prognosis , Proto-Oncogene Proteins B-raf/genetics , Child, Preschool , Gene Expression Profiling , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Mutation , T-Lymphocytes/immunology , Precision Medicine/methods , Lymphocytes, Tumor-Infiltrating/immunology , Clinical Relevance
2.
Acta Neuropathol ; 144(5): 1027-1048, 2022 11.
Article in English | MEDLINE | ID: mdl-36070144

ABSTRACT

Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.


Subject(s)
Glioma , Histones , Amino Acids/genetics , Child , DNA , Glioma/genetics , Glioma/metabolism , Histones/genetics , Humans , Mutation/genetics , Nucleosomes , Transcription Factors/genetics
3.
Mol Cell Proteomics ; 21(10): 100411, 2022 10.
Article in English | MEDLINE | ID: mdl-36089195

ABSTRACT

Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.


Subject(s)
Histone Chaperones , Histones , Histones/metabolism , Histone Chaperones/genetics , Histone Chaperones/metabolism , Chromatin , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Transcription Factors/metabolism , Nucleosomes
4.
Nat Commun ; 13(1): 588, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102191

ABSTRACT

High-grade diffuse glioma (HGG) is the leading cause of brain tumour death. While the genetic drivers of HGG have been well described, targeting these has thus far had little impact on survival suggesting other mechanisms are at play. Here we interrogate the alternative splicing landscape of pediatric and adult HGG through multi-omic analyses, uncovering an increased splicing burden compared with normal brain. The rate of recurrent alternative splicing in cancer drivers exceeds their mutation rate, a pattern that is recapitulated in pan-cancer analyses, and is associated with worse prognosis in HGG. We investigate potential oncogenicity by interrogating cancer pathways affected by alternative splicing in HGG; spliced cancer drivers include members of the RAS/MAPK pathway. RAS suppressor neurofibromin 1 is differentially spliced to a less active isoform in >80% of HGG downstream from REST upregulation, activating the RAS/MAPK pathway and reducing glioblastoma patient survival. Overall, our results identify non-mutagenic mechanisms by which cancers activate oncogenic pathways which need to accounted for in personalized medicine approaches.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Oncogenes/genetics , RNA Splicing/genetics , Adult , Alternative Splicing/genetics , Animals , Base Sequence , Binding Sites , Brain Neoplasms/pathology , Cell Line, Tumor , Child , Chromatin/metabolism , Exons/genetics , Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Glioma/pathology , Humans , MAP Kinase Signaling System , Mice , Mutation/genetics , Neurofibromin 1/genetics , Neurofibromin 1/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Repressor Proteins/metabolism , Spliceosomes/genetics , Transcription Factors/metabolism , ras Proteins/metabolism
5.
Nat Commun ; 11(1): 6216, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277484

ABSTRACT

Histone H3 lysine 27 (H3K27M) mutations represent the canonical oncohistone, occurring frequently in midline gliomas but also identified in haematopoietic malignancies and carcinomas. H3K27M functions, at least in part, through widespread changes in H3K27 trimethylation but its role in tumour initiation remains obscure. To address this, we created a transgenic mouse expressing H3.3K27M in diverse progenitor cell populations. H3.3K27M expression drives tumorigenesis in multiple tissues, which is further enhanced by Trp53 deletion. We find that H3.3K27M epigenetically activates a transcriptome, enriched for PRC2 and SOX10 targets, that overrides developmental and tissue specificity and is conserved between H3.3K27M-mutant mouse and human tumours. A key feature of the H3K27M transcriptome is activation of a RAS/MYC axis, which we find can be targeted therapeutically in isogenic and primary DIPG cell lines with H3.3K27M mutations, providing an explanation for the common co-occurrence of alterations in these pathways in human H3.3K27M-driven cancer. Taken together, these results show how H3.3K27M-driven transcriptome remodelling promotes tumorigenesis and will be critical for targeting cancers with these mutations.


Subject(s)
Brain Neoplasms/genetics , Epigenesis, Genetic , Glioma/genetics , Histones/genetics , Proto-Oncogene Proteins c-myc/genetics , ras Proteins/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Disease Models, Animal , Epigenomics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Glioma/pathology , Histones/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Methylation , Mice, Knockout , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , ras Proteins/metabolism
6.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L524-L533, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28546153

ABSTRACT

Alterations to the pulmonary surfactant system have been observed consistently in ventilation-induced lung injury (VILI) including composition changes and impairments in the surface tension reducing ability of the isolated extracellular surfactant. However, there is limited information about the effects of VILI on the intracellular form of surfactant, the lamellar body. It is hypothesized that VILI leads to alterations of lamellar body numbers and function. To test this hypothesis, rats were randomized to one of three groups, nonventilated controls, control ventilation, and high tidal volume ventilation (VILI). Following physiological assessment to confirm lung injury, isolated lamellar bodies were tested for surfactant function on a constrained sessile drop surfactometer. A separate cohort of animals was used to fix the lungs followed by examination of lamellar body numbers and morphology using transmission electron microscopy. The results showed an impaired ability of reducing surface tension for the lamellar bodies isolated from the VILI group as compared with the two other groups. The morphological assessment revealed that the number, and the relative area covered by, lamellar bodies were significantly decreased in animals with VILI animals as compared with the other groups. It is concluded that VILI causes significant alterations to lamellar bodies. It is speculated that increased secretion causes a depletion of lamellar bodies that cannot be compensated by de novo synthesis of surfactant in these injured lungs.


Subject(s)
Lysosomes/pathology , Ventilator-Induced Lung Injury/pathology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/ultrastructure , Animals , Cholesterol/metabolism , Lung/drug effects , Lung/pathology , Lung/physiopathology , Lysosomes/drug effects , Lysosomes/ultrastructure , Male , Oxygen/metabolism , Phospholipids/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Surfactants/pharmacology , Rats, Sprague-Dawley , Surface Tension/drug effects , Ventilator-Induced Lung Injury/physiopathology
7.
Can J Physiol Pharmacol ; 94(6): 682-5, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27096327

ABSTRACT

The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3(-/-) mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3(-/-) mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3(-/-) mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS.


Subject(s)
Acute Lung Injury/metabolism , Disease Models, Animal , Matrix Metalloproteinase 3/deficiency , Pulmonary Surfactants/metabolism , Respiratory Distress Syndrome/metabolism , Acute Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Respiratory Distress Syndrome/pathology
8.
Biochem Biophys Rep ; 7: 180-187, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28758151

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a pulmonary disorder associated with alterations to the pulmonary surfactant system. Recent studies showed that supra-physiological levels of cholesterol in surfactant contribute to impaired function. Since cholesterol is incorporated into surfactant within the alveolar type II cells which derives its cholesterol from serum, it was hypothesized that serum hypercholesterolemia would predispose the host to the development of lung injury due to alterations of cholesterol content in the surfactant system. Wistar rats were randomized to a standard lab diet or a high cholesterol diet for 17-20 days. Animals were then exposed to one of three models of lung injury: i) acid aspiration ii) ventilation induced lung injury, and iii) surfactant depletion. Following physiological monitoring, lungs were lavaged to obtain and analyze the surfactant system. The physiological results showed there was no effect of the high cholesterol diet on the severity of lung injury in any of the three models of injury. There was also no effect of the diet on surfactant cholesterol composition. Rats fed a high cholesterol diet had a significant impairment in surface tension reducing capabilities of isolated surfactant compared to those fed a standard diet exposed to the surfactant depletion injury. In addition, only rats that were exposed to ventilation induced lung injury had elevated levels of surfactant associated cholesterol compared to non-injured rats. It is concluded that serum hypercholesterolemia does not predispose rats to altered surfactant cholesterol composition or to lung injury. Elevated cholesterol within surfactant may be a marker for ventilation induced lung damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...