Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Chemosphere ; 362: 142144, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38677615

ABSTRACT

Materials from green resources boast a low carbon footprint, forming the foundation of the circular economy approach in materials science. Thus, in this study, waste poly(ethylene terephthalate) (PET) was subjected to depolymerization using propylene glycol (PG), and subsequent polycondensation with bio-based maleic anhydride (MA) produced unsaturated polyester resin (b-UPR). Bio-derived acryloyl-modified Kraft lignin (KfL-A) served as a vinyl reactive filler in the b-UPR matrix to create b-UPR/KfL-A composites. The structural characterization of KfL-A and b-UPR involved the use of FTIR and NMR techniques. The mechanical properties of the newly fabricated composites were assessed through tensile strength, Vickers microhardness, and dynamic mechanical tests. The addition of KfL-A to the rigid b-UPR matrix enhanced material flexibility, resulting in less stiff and hard materials while preserving composite toughness. For instance, incorporating 10 wt% of KfL-A in b-UPR led to a 17% reduction in hardness, a 48% decrease in tensile strength, and a 20% reduction in toughness. Positive environmental impact was achieved by incorporation of 64 wt% of renewable and recycled raw material. Analogously prepared b-UPR/KfL composites showed structural inhomogeneity and somewhat better mechanical properties. Transmission (TEM) and scanning (SEM) electron microscopies revealed a suitable relationship between mechanical and structural properties of composites in relation to the extent of KfL-A addition. The UL94V flammability rating confirmed that flame resistance increased proportionally with the KfL-A addition. Once deposited in a landfill, these composites are expected to disintegrate more easily than PET, causing less harm to the environment and contributing to sustainability in the plastics cycle.

2.
Polymers (Basel) ; 15(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37514442

ABSTRACT

Thermo-chemical conversion via the pyrolysis of cigarette butt (CB) filters was successfully valorized and upcycled in the pre-carbonization and carbonization stages. The pre-carbonization stage (devolatilization) of the precursor material (cellulose acetate filter, r-CAcF) was analyzed by micro-scale experiments under non-isothermal conditions using TG-DTG-DTA and DSC techniques. The results of a detailed kinetic study showed that the decomposition of r-CAcF takes place via complex mechanisms, including consecutive reaction steps and two single-step reactions. Consecutive stages include the α-transition referred to as a cellulose polymorphic transformation (cellulose I → II) through crystallization mechanism changes, where a more thermodynamically ordered system was obtained. It was found that the transformation rate of cellulose I → II ('cellulose regeneration') is strongly affected by the presence of alkali metals and the deacetylation process. Two single-step reactions showed significant overlapping behavior, which involves a nucleation-controlled scission mechanism (producing levoglucosan, gaseous products, and abundant radicals) and hydrolytic decomposition of cellulose by catalytic cleavage of glycosidic bonds with the presence of an acidic catalyst. A macro-scale experiment showed that the operating temperature and heating rate had the most notable effects on the total surface area of the manufactured carbon. A substantial degree of mesoporosity with a median pore radius of 3.1695 nm was identified. The presence of macroporosity on the carbon surface and acidic surface functional groups was observed.

3.
J Environ Manage ; 326(Pt B): 116838, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36435138

ABSTRACT

Multifunctional lignin bio-based adsorbent, b-LMS, was obtained via inverse copolymerization in the suspension of acryloyl modified kraft lignin (KfL-AA) and bio-based trimethylolpropane triacrylate (bio-TMPTA). Morphological and structural characterization of KfL-AA and b-LMS was performed using BET, FTIR, Raman, NMR, TGA, SEM, and XPS techniques. The b-LMS microspheres with 253 ± 42 µm diameters, 69.4 m2 g-1 surface area, and 59% porosity efficiently adsorb Malachite Green (MG), Tartrazine (T), and Methyl Red (MR) dye. The influence of pH, pollutant concentration, temperature, and time on the removal efficiency was studied in a batch mode. Favorable and spontaneous processes with high adsorption capacities e.g. 116.8 mg g-1 for MG, 86.8 mg g-1 for T, and 68.6 mg g-1 for MR indicate the significant adsorptive potential of b-LMS. Results from diffusional and single mass transfer resistance studies indicate that pore diffusion is a rate-limiting step. Theoretical calculations confirmed a higher affinity of b-LMS to cationic dye MG compared with an anionic and neutral one, i.e. T and MR, respectively. The data fitting from a flow system, using semi-empirical equations and Pore Surface Diffusion Modelling (PSDM) provided breakthrough point determination. The results from the desorption and competitive adsorption study proved the exceptional performance of b-LMS. Moreover, sulfation of b-LMS, i.e.production of b-LMS-OSO3H, introduced high-affinity sulfate groups with respect to cationic dye and cations. Developed methodology implements the principle of sustainable development and offers concept whose results contribute to the minimization of environmental pollution.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Microspheres , Lignin , Water Pollutants, Chemical/chemistry , Kinetics , Cations/chemistry , Models, Theoretical
4.
Front Cell Dev Biol ; 10: 952208, 2022.
Article in English | MEDLINE | ID: mdl-36092707

ABSTRACT

Understanding processes that occur after injuries to the central nervous system is essential in order to gain insight into how the restoration of function can be improved. Extracellular glycoprotein tenascin-C (TnC) has numerous functions in wound healing process depending on the expression time, location, isoform and binding partners which makes it interesting to study in this context. We used an in vitro injury model, the mixed culture of cortical astrocytes and microglia, and observed that without TnC microglial cells tend to populate gap area in greater numbers and proliferate more, whereas astrocytes build up in the border region to promote faster gap closure. Alternatively spliced domain of TnC, fibronectin type III-like repeat D (FnD) strongly affected physiological properties and morphology of both astrocytes and microglia in this injury model. The rate of microglial proliferation in the injury region decreased significantly with the addition of FnD. Additionally, density of microglia also decreased, in part due to reduced proliferation, and possibly due to reduced migration and increased contact inhibition between enlarged FnD-treated cells. Overall morphology of FnD-treated microglia resembled the activated pro-inflammatory cells, and elevated expression of iNOS was in accordance with this phenotype. The effect of FnD on astrocytes was different, as it did not affect their proliferation, but stimulated migration of reactivated astrocytes into the scratched area 48 h after the lesion. Elevated expression and secretion of TNF-α and IL-1ß upon FnD treatment indicated the onset of inflammation. Furthermore, on Western blots we observed increased intensity of precursor bands of ß1 integrin and appearance of monomeric bands of P2Y12R after FnD treatment which substantiates and clarifies its role in cellular shape and motility changes. Our results show versatile functions of TnC and in particular FnD after injury, mostly contributing to ongoing inflammation in the injury region. Based on our findings, FnD might be instrumental in limiting immune cell infiltration, and promoting astrocyte migration within the injury region, thus influencing spaciotemporal organization of the wound and surrounding area.

5.
J Alzheimers Dis ; 88(4): 1443-1458, 2022.
Article in English | MEDLINE | ID: mdl-35811528

ABSTRACT

BACKGROUND: In Alzheimer's disease (AD), synaptic dysfunction is thought to occur many years before the onset of cognitive decline. OBJECTIVE: Detecting synaptic dysfunctions at the earliest stage of AD would be desirable in both clinic and research settings. METHODS: Population voltage imaging allows monitoring of synaptic depolarizations, to which calcium imaging is relatively blind. We developed an AD mouse model (APPswe/PS1dE9 background) expressing a genetically-encoded voltage indicator (GEVI) in the neocortex. GEVI was restricted to the excitatory pyramidal neurons (unlike the voltage-sensitive dyes). RESULTS: Expression of GEVI did not disrupt AD model formation of amyloid plaques. GEVI expression was stable in both AD model mice and Control (healthy) littermates (CTRL) over 247 days postnatal. Brain slices were stimulated in layer 2/3. From the evoked voltage waveforms, we extracted several parameters for comparison AD versus CTRL. Some parameters (e.g., temporal summation, refractoriness, and peak latency) were weak predictors, while other parameters (e.g., signal amplitude, attenuation with distance, and duration (half-width) of the evoked transients) were stronger predictors of the AD condition. Around postnatal age 150 days (P150) and especially at P200, synaptically-evoked voltage signals in brain slices were weaker in the AD groups versus the age- and sex-matched CTRL groups, suggesting an AD-mediated synaptic weakening that coincides with the accumulation of plaques. However, at the youngest ages examined, P40 and P80, the AD groups showed differentially stronger signals, suggesting "hyperexcitability" prior to the formation of plaques. CONCLUSION: Our results indicate bidirectional alterations in cortical physiology in AD model mice; occurring both prior (P40-80), and after (P150-200) the amyloid deposition.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Plaque, Amyloid/metabolism
6.
J Vis Exp ; (184)2022 06 23.
Article in English | MEDLINE | ID: mdl-35815991

ABSTRACT

This protocol demonstrates how to prepare primary cultures of glial cells, astrocytes, and microglia from the cortices of Sprague Dawley rats and how to use these cells for the purpose of studying the pathophysiology of amyotrophic lateral sclerosis (ALS) in the rat hSOD1G93A model. First, the protocol shows how to isolate and culture astrocytes and microglia from postnatal rat cortices, and then how to characterize and test these cultures for purity by immunocytochemistry using the glial fibrillary acidic protein (GFAP) marker of astrocytes and the ionized calcium-binding adaptor molecule 1 (Iba1) microglial marker. In the next stage, methods are described for dye-loading (calcium-sensitive Fluo 4-AM) of cultured cells and the recordings of Ca2+ changes in video imaging experiments on live cells. The examples of video recordings consist of: (1) cases of Ca2+ imaging of cultured astrocytes acutely exposed to immunoglobulin G (IgG) isolated from ALS patients, showing a characteristic and specific response compared to the response to ATP as demonstrated in the same experiment. Examples also show a more pronounced transient rise in intracellular calcium concentration evoked by ALS IgG in hSOD1G93A astrocytes compared to non-transgenic controls; (2) Ca2+ imaging of cultured astrocytes during a depletion of calcium stores by thapsigargin (Thg), a non-competitive inhibitor of the endoplasmic reticulum Ca2+ ATPase, followed by store-operated calcium entry elicited by the addition of calcium in the recording solution, which demonstrates the difference between Ca2+ store operation in hSOD1G93A and in non-transgenic astrocytes; (3) Ca2+ imaging of the cultured microglia showing predominantly a lack of response to ALS IgG, whereas ATP application elicited a Ca2+ change. This paper also emphasizes possible caveats and cautions regarding critical cell density and purity of cultures, choosing the correct concentration of the Ca2+ dye and dye-loading techniques.


Subject(s)
Amyotrophic Lateral Sclerosis , Adenosine Triphosphate/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Astrocytes/metabolism , Calcium/metabolism , Cells, Cultured , Immunoglobulin G/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase
7.
Sci Rep ; 11(1): 5295, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674659

ABSTRACT

Genetically-encoded calcium indicators (GECIs) are essential for studying brain function, while voltage indicators (GEVIs) are slowly permeating neuroscience. Fundamentally, GECI and GEVI measure different things, but both are advertised as reporters of "neuronal activity". We quantified the similarities and differences between calcium and voltage imaging modalities, in the context of population activity (without single-cell resolution) in brain slices. GECI optical signals showed 8-20 times better SNR than GEVI signals, but GECI signals attenuated more with distance from the stimulation site. We show the exact temporal discrepancy between calcium and voltage imaging modalities, and discuss the misleading aspects of GECI imaging. For example, population voltage signals already repolarized to the baseline (~ disappeared), while the GECI signals were still near maximum. The region-to-region propagation latencies, easily captured by GEVI imaging, are blurred in GECI imaging. Temporal summation of GECI signals is highly exaggerated, causing uniform voltage events produced by neuronal populations to appear with highly variable amplitudes in GECI population traces. Relative signal amplitudes in GECI recordings are thus misleading. In simultaneous recordings from multiple sites, the compound EPSP signals in cortical neuropil (population signals) are less distorted by GEVIs than by GECIs.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Calcium Signaling/genetics , Calcium/metabolism , Neurons/metabolism , Voltage-Sensitive Dye Imaging/methods , Animals , Female , Indicators and Reagents , Male , Membrane Potentials/genetics , Mice , Mice, Transgenic , Signal-To-Noise Ratio
8.
eNeuro ; 7(5)2020.
Article in English | MEDLINE | ID: mdl-32817120

ABSTRACT

Genetically encoded voltage indicators (GEVIs) could potentially be used for mapping neural circuits at the plane of synaptic potentials and plateau potentials-two blind spots of GCaMP-based imaging. In the last year alone, several laboratories reported significant breakthroughs in the quality of GEVIs and the efficacy of the voltage imaging equipment. One major obstacle of using well performing GEVIs in the pursuit of interesting biological data is the process of transferring GEVIs between laboratories, as their reported qualities (e.g., membrane targeting, brightness, sensitivity, optical signal quality) are often difficult to reproduce outside of the laboratory of the GEVI origin. We have tested eight available GEVIs (Archon1, ArcLightD, ASAP1, ASAP2s, ASAP3b, Bongwoori-Pos6, FlicR1, and chi-VSFP-Butterfly) and two voltage-sensitive dyes (BeRST1 and di-4-ANEPPS). We used the same microscope, lens, and optical detector, while the light sources were interchanged. GEVI voltage imaging was attempted in the following three preparations: (1) cultured neurons, (2) HEK293 cells, and (3) mouse brain slices. Systematic measurements were successful only in HEK293 cells and brain slices. Despite the significant differences in brightness and dynamic response (ON rate), all tested indicators produced reasonable optical signals in brain slices and solid in vitro quality properties, in the range initially reported by the creator laboratories. Side-by-side comparisons between GEVIs and organic dyes obtained in HEK293 cells and brain slices by a "third party" (current data) will be useful for determining the right voltage indicator for a given research application.


Subject(s)
Butterflies , Adaptor Proteins, Signal Transducing , Animals , Butterflies/metabolism , HEK293 Cells , Humans , In Vitro Techniques , Luminescent Proteins/metabolism , Neurons/metabolism
9.
Bioorg Chem ; 102: 104073, 2020 09.
Article in English | MEDLINE | ID: mdl-32693308

ABSTRACT

In this study we synthesized a series of sixteen bis(imino)pyridines (BIPs) starting from 2,6-diaminopyridine and various aromatic aldehydes, and evaluated their antioxidant, antibacterial, antifungal and acetylcholinesterase (AChE) inhibitory activity. The chemical structures were elucidated by FTIR, elemental analysis, ESR and HRMS. 1H and 13C NMR spectra couldn't be acquired due to the formation of stable, carbon-centered radical cations in a solution, as confirmed by ESR spectroscopy and DFT calculations. The in vitro antioxidant potency was evaluated using four assays: free radical scavenging activity (DPPH and ABTS), reducing power and total antioxidant capacity assay. BIPs demonstrated excellent antioxidant properties, and two derivatives proved to be more potent than reference antioxidants (ascorbic acid and Trolox) in all assays. DFT calculations on ωB97XD/6-311++g(d,p) level of theory provided valuable insights into the radical scavenging mechanism of BIPs. For hydroxyl-substituted BIPs, hydrogen atom transfer (HAT) is a predominant mechanism, while the single electron transfer coupled with proton transfer (SET-PT) governs the antioxidant activity of other derivatives. Intramolecular hydrogen bonding (IHB) plays an important role in the mechanism of antioxidant activity as revealed by noncovalent interaction analysis and rotational barrier calculations. The spin density of radical cations is localized on carbon atoms of a pyridine ring, which corroborates with g-factors and multiplicity obtained from ESR analysis. The most potent BIP exhibited moderate inhibitory activity toward AChE (IC50 = 20 ± 4 µM), while molecular docking suggested binding at the peripheral anionic site of AChE with the MMFF94 binding enthalpy of -43.4 kcal/mol. Moderate in vitro antimicrobial activity of BIPs have been determined against several pathogenic bacterial strains: Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and clinical isolate of methicillin resistant S. aureus (MRSA). The antifungal activity of BIPs toward Candida albicans was also confirmed. The similarity ensemble approach combined with molecular docking suggested leucyl aminopeptidase as the probable antimicrobial target for the three most potent BIP derivatives.


Subject(s)
Anti-Infective Agents/therapeutic use , Antifungal Agents/therapeutic use , Antioxidants/therapeutic use , Cholinesterase Inhibitors/therapeutic use , Electron Spin Resonance Spectroscopy/methods , Pyridines/chemical synthesis , Pyridines/therapeutic use , Candida albicans , Humans , Pyridines/pharmacology , Structure-Activity Relationship
10.
Cereb Cortex ; 30(3): 1244-1259, 2020 03 14.
Article in English | MEDLINE | ID: mdl-31408166

ABSTRACT

Electrical activity is important for brain development. In brain slices, human subplate neurons exhibit spontaneous electrical activity that is highly sensitive to lanthanum. Based on the results of pharmacological experiments in human fetal tissue, we hypothesized that hemichannel-forming connexin (Cx) isoforms 26, 36, and 45 would be expressed on neurons in the subplate (SP) zone. RNA sequencing of dissected human cortical mantles at ages of 17-23 gestational weeks revealed that Cx45 has the highest expression, followed by Cx36 and Cx26. The levels of Cx and pannexin expression between male and female fetal cortices were not significantly different. Immunohistochemical analysis detected Cx45- and Cx26-expressing neurons in the upper segment of the SP zone. Cx45 was present on the cell bodies of human SP neurons, while Cx26 was found on both cell bodies and dendrites. Cx45, Cx36, and Cx26 were strongly expressed in the cortical plate, where newborn migrating neurons line up to form cortical layers. New information about the expression of 3 "neuronal" Cx isoforms in each cortical layer/zone (e.g., SP, cortical plate) and pharmacological data with cadmium and lanthanum may improve our understanding of the cellular mechanisms underlying neuronal development in human fetuses and potential vulnerabilities.


Subject(s)
Cadmium/administration & dosage , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Connexins/metabolism , Lanthanum/administration & dosage , Neurons/drug effects , Neurons/physiology , Connexin 26/metabolism , Female , Fetus , Humans , Male , Membrane Potentials , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Gap Junction delta-2 Protein
12.
Front Cell Neurosci ; 13: 39, 2019.
Article in English | MEDLINE | ID: mdl-30890919

ABSTRACT

Voltage imaging of many neurons simultaneously at single-cell resolution is hampered by the difficulty of detecting small voltage signals from overlapping neuronal processes in neural tissue. Recent advances in genetically encoded voltage indicator (GEVI) imaging have shown single-cell resolution optical voltage recordings in intact tissue through imaging naturally sparse cell classes, sparse viral expression, soma restricted expression, advanced optical systems, or a combination of these. Widespread sparse and strong transgenic GEVI expression would enable straightforward optical access to a densely occurring cell type, such as cortical pyramidal cells. Here we demonstrate that a recently described sparse transgenic expression strategy can enable single-cell resolution voltage imaging of cortical pyramidal cells in intact brain tissue without restricting expression to the soma. We also quantify the functional crosstalk in brain tissue and discuss optimal imaging rates to inform future GEVI experimental design.

13.
Cereb Cortex ; 29(8): 3363-3379, 2019 07 22.
Article in English | MEDLINE | ID: mdl-30169554

ABSTRACT

Subplate (SP) neurons exhibit spontaneous plateau depolarizations mediated by connexin hemichannels. Postnatal (P1-P6) mice show identical voltage pattern and drug-sensitivity as observed in slices from human fetal cortex; indicating that the mouse is a useful model for studying the cellular physiology of the developing neocortex. In mouse SP neurons, spontaneous plateau depolarizations were insensitive to blockers of: synaptic transmission (glutamatergic, GABAergic, or glycinergic), pannexins (probenecid), or calcium channels (mibefradil, verapamil, diltiazem); while highly sensitive to blockers of gap junctions (octanol), hemichannels (La3+, lindane, Gd3+), or glial metabolism (DLFC). Application of La3+ (100 µM) does not exert its effect on electrical activity by blocking calcium channels. Intracellular application of Gd3+ determined that Gd3+-sensitive pores (putative connexin hemichannels) reside on the membrane of SP neurons. Immunostaining of cortical sections (P1-P6) detected connexins 26, and 45 in neurons, but not connexins 32 and 36. Vimentin-positive glial cells were detected in the SP zone suggesting a potential physiological interaction between SP neurons and radial glia. SP spontaneous activity was reduced by blocking glial metabolism with DFLC or by blocking purinergic receptors by PPADS. Connexin hemichannels and ATP release from vimentin-positive glial cells may underlie spontaneous plateau depolarizations in the developing mammalian cortex.


Subject(s)
Cerebral Cortex/drug effects , Neuroglia/metabolism , Neurons/drug effects , Action Potentials , Animals , Bicuculline/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Signaling , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Citrates , Connexin 26 , Connexins/metabolism , Ependymoglial Cells/metabolism , Excitatory Amino Acid Antagonists/pharmacology , GABA-A Receptor Antagonists/pharmacology , Gadolinium/pharmacology , Gap Junctions/metabolism , Glycine Agents/pharmacology , Hexachlorocyclohexane/pharmacology , Lanthanum/pharmacology , Mice , Neurons/metabolism , Octanols/pharmacology , Patch-Clamp Techniques , Probenecid/pharmacology , Pyridoxal Phosphate/analogs & derivatives , Pyridoxal Phosphate/pharmacology , Quinoxalines/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Strychnine/pharmacology , Valine/analogs & derivatives , Valine/pharmacology , Vimentin/metabolism , Gap Junction beta-1 Protein , Gap Junction delta-2 Protein
14.
Front Immunol ; 8: 1619, 2017.
Article in English | MEDLINE | ID: mdl-29218049

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder with a very fast progression, no diagnostic tool for the presymptomatic phase, and still no effective treatment of the disease. Although ALS affects motor neurons, the overall pathophysiological condition points out to the non-cell autonomous mechanisms, where astrocytes and microglia play crucial roles in the disease progression. We have already shown that IgG from sera of ALS patients (ALS IgG) induce calcium transients and an increase in the mobility of acidic vesicles in cultured rat astrocytes. Having in mind the role of microglia in neurodegeneration, and a well-documented fact that oxidative stress is one of the many components contributing to the disease, we decided to examine the effect of ALS IgG on activation, oxidative stress and antioxidative system of BV-2 microglia, and to evaluate their acute effect on cytosolic peroxide, pH, and on reactive oxygen species (ROS) generation. All tested ALS IgGs (compared to control IgG) induced oxidative stress (rise in nitric oxide and the index of lipid peroxidation) followed by release of TNF-α and higher antioxidative defense (elevation of Mn- and CuZn-superoxide dismutase, catalase, and glutathione reductase with a decrease of glutathione peroxidase and glutathione) after 24 h treatment. Both ALS IgG and control IgG showed same localization on the membrane of BV-2 cells following 24 h treatment. Cytosolic peroxide and pH alteration were evaluated with fluorescent probes HyPer and SypHer, respectively, having in mind that HyPer also reacts to pH changes. Out of 11 tested IgGs from ALS patients, 4 induced slow exponential rise of HyPer signal, with maximal normalized fluorescence in the range 0.2-0.5, also inducing similar increase of SypHer intensity, but of a lower amplitude. None of the control IgGs induced changes with neither of the indicators. Acute ROS generation was detected in one out of three tested ALS samples with carboxy-H2DCFDA. The observed phenomena demonstrate the potential role of inflammatory humoral factors, IgGs, as potential triggers of the activation in microglia, known to occur in later stages of ALS. Therefore, revealing the ALS IgG signaling cascade in microglial cells could offer a valuable molecular biomarker and/or a potential therapeutic target.

15.
Acta Neuropathol Commun ; 5(1): 70, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28882191

ABSTRACT

Systemic lupus erythematosus (SLE) is a potentially fatal autoimmune disease that is often accompanied by brain atrophy and diverse neuropsychiatric manifestations of unknown origin. More recently, it was observed that cerebrospinal fluid (CSF) from patients and lupus-prone mice can be neurotoxic and that acute administration of specific brain-reactive autoantibodies (BRAs) can induce deficits in isolated behavioral tasks. Given the chronic and complex nature of CNS SLE, the current study examines broad behavioral performance and neuronal Ca2+ signaling in mice receiving a sustained infusion of cerebrospinal fluid (CSF) from CNS SLE patients and putative BRAs (anti-NR2A, anti-ribosomal P, and anti-α-tubulin). A 2-week intracerebroventricular (i.c.v.) infusion of CSF altered home-cage behavior and induced olfactory dysfunction, excessive immobility in the forced swim test, and perseveration in a learning task. Conversely, sustained administration of purified BRAs produced relatively mild, both inhibitory and stimulatory effects on olfaction, spatial learning/memory, and home-cage behavior. In vitro studies revealed that administration of some CSF samples induces a rapid influx of extracellular Ca2+ into murine neurons, an effect that could be partially mimicked with the commercial anti-NR2A antibody and blocked with selective N-methyl-D-aspartate (NMDA) receptor antagonists. The current findings confirm that the CSF from CNS SLE patients can be neuroactive and support the hypothesis that intrathecal BRAs induce synergistically diverse effects on all domains of behavior. In addition, anti-NMDA receptor antibodies may alter Ca2+ homeostasis of central neurons, thus accounting for excitotoxicity and contributing to the heterogeneity of psychiatric manifestations in CNS SLE and other autoantibody-related brain disorders.


Subject(s)
Behavior, Animal/physiology , Calcium Signaling/immunology , Lupus Erythematosus, Systemic/cerebrospinal fluid , Lupus Erythematosus, Systemic/immunology , Neurons/immunology , Aged , Animals , Autoantibodies/administration & dosage , Autoantibodies/metabolism , Brain/immunology , Cells, Cultured , Depression/immunology , Disease Models, Animal , Female , Humans , Infusions, Intraventricular , Learning Disabilities/immunology , Lupus Erythematosus, Systemic/psychology , Male , Memory Disorders/immunology , Mice , Middle Aged , Motor Activity/physiology , Olfaction Disorders/immunology , Proof of Concept Study
16.
J Neurosci Res ; 95(4): 1053-1066, 2017 04.
Article in English | MEDLINE | ID: mdl-27714837

ABSTRACT

It is widely accepted that adenosine triphosphate (ATP) acts as a universal danger-associated molecular pattern with several known mechanisms for immune cell activation. In the central nervous system, ATP activates microglia and astrocytes and induces a neuroinflammatory response. The aim of the present study was to describe responses of isolated astrocytes to increasing concentrations of ATP (5 µM to 1 mM), which were intended to mimic graded intensity of the extracellular stimulus. The results show that ATP induces graded activation response of astrocytes in terms of the cell proliferation, stellation, shape remodeling, and underlying actin and GFAP filament rearrangement, although the changes occurred without an apparent increase in GFAP and actin protein expression. On the other hand, ATP in the range of applied concentrations did not evoke IL-1ß release from cultured astrocytes, nor did it modify the release from LPS and LPS+IFN-γ-primed astrocytes. ATP did not promote astrocyte migration in the wound-healing assay, nor did it increase production of reactive oxygen and nitrogen species and lipid peroxidation. Instead, ATP strengthened the antioxidative defense of astrocytes by inducing Cu/ZnSOD and MnSOD activities and by increasing their glutathione content. Our current results suggest that although ATP triggers several attributes of activated astrocytic phenotype with a magnitude that increases with the concentration, it is not sufficient to induce full-blown reactive phenotype of astrocytes in vitro. © 2016 Wiley Periodicals, Inc.


Subject(s)
Adenosine Triphosphate/pharmacology , Astrocytes/drug effects , Glutathione/metabolism , Superoxide Dismutase/metabolism , Actins/metabolism , Animals , Animals, Newborn , Annexin A5/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Glial Fibrillary Acidic Protein/metabolism , Interferon-gamma/pharmacology , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Malondialdehyde/metabolism , Nitric Oxide/metabolism , Rats , Rats, Wistar , Wound Healing/drug effects
17.
Article in English | MEDLINE | ID: mdl-26892977

ABSTRACT

Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13 min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca(2+) activity, the effect being dependent on external Ca(2+) and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14 min). In conclusion, this study points to membrane permeability and Ca(2+) signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.


Subject(s)
Astrocytes/cytology , Calcium/metabolism , Cytosol/drug effects , Membrane Potentials/drug effects , Superoxide Dismutase/pharmacology , Animals , Animals, Newborn , Biophysics , Cells, Cultured , Cerebral Cortex/cytology , Cytosol/metabolism , Electric Stimulation , Humans , Mutation/genetics , Rats , Rats, Wistar , Superoxide Dismutase/genetics , Time Factors
18.
J Mol Neurosci ; 57(3): 452-62, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26080748

ABSTRACT

Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1-3 (NTPDase1-3), ecto-nucleotide pyrophosphatase/phospodiesterases 1-3 (NPP1-3), and ecto-5'-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1-3, NPP1-3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis.


Subject(s)
5'-Nucleotidase/biosynthesis , Adenosine Triphosphate/pharmacology , Astrocytes/drug effects , Cell Membrane/enzymology , Nerve Tissue Proteins/biosynthesis , Phosphoric Diester Hydrolases/biosynthesis , Pyrophosphatases/biosynthesis , 5'-Nucleotidase/genetics , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/metabolism , Cell Division , Cell Membrane/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Enzyme Induction/drug effects , Gliosis/enzymology , Nerve Tissue Proteins/genetics , Phosphoric Diester Hydrolases/genetics , Primary Cell Culture , Protein Biosynthesis/drug effects , Pyrophosphatases/genetics , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription, Genetic/drug effects , Up-Regulation/drug effects
19.
Article in English | MEDLINE | ID: mdl-25759261

ABSTRACT

Temperature dependence of electroretinogram (ERG) was investigated in 3 fish species occupying different habitats--dogfish shark (Scyliorhinus canicula), Prussian carp (Carassius gibelio) and European eel (Anguilla anguilla). Acute cooling of the shark isolated eyecup from 23°C down to 6°C induced suppression of the electroretinographic b-wave--a complete degradation of this component was observed at 6°C. On the other hand, photoreceptor component of the ERG, the negative late receptor potential was not affected by cooling. The fact that the suppression of the dogfish shark b-wave at low temperatures was as a rule irreversible testifies about breakdown of neural retinal function at cold temperature extremes. Although in vivo experiments on immobilized Prussian carps have never resulted in complete deterioration of the b-wave at low temperatures, significant suppression of this ERG component by cooling was detected. Suppressing the effect of low temperatures on Prussian carp ERG might be due to the fact that C. gibelio, as well as other cyprinids, can be characterized as a warmwater species preferring temperatures well above cold extremes. The ERG of the eel, the third examined species, exhibited the strongest resistance to extremely low temperatures. During acute cooling of in situ eyecup preparations of migrating silver eels from 30°C down to 2°C the form of ERG became wider, but the amplitude of the b-wave only slightly decreased. High tolerance of eel b-wave to cold extremes shown in our study complies with ecological data confirming eurythermia in migrating silver eels remarkably adapted to cold-water environment as well.


Subject(s)
Electroretinography , Fishes/physiology , Animals
20.
Biomed Res Int ; 2014: 907545, 2014.
Article in English | MEDLINE | ID: mdl-24949481

ABSTRACT

Recently neuroinflammation has gained a particular focus as a key mechanism of ALS. Several studies in vivo as well as in vitro have nominated immunoglobulin G (IgG) isolated from ALS patients as an active contributor to disease onset and progression. We have shown that ALS IgG affects astroglial Ca(2+) excitability and induces downstream activation of phosphatidylinositol 3-kinase. These studies were hampered by a lack of knowledge of the pathway of entry of immune factors in the CNS. Our MRI data revealed the blood-brain barrier BBB leakage and T cell infiltration into brain parenchyma in ALS G93A rats. Since astrocyte ensheathes blood vessel wall contributing to BBB stability and plays an important role in ALS pathogenesis, we have studied astrocytic membrane proteins water channel aquaporin-4 and the inwardly rectifying potassium channel. In this review, we will summarize data related to BBB disruption with particular emphasis on impaired function of astrocytes in ALS. We will discuss implication of membrane proteins expressed on astrocytic endfeet, aquaporin-4, and inwardly rectifying potassium channel in the pathology of ALS. In addition to ALS-specific IgGs, these membrane proteins are proposed as novel biomarkers of the disease.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Biomarkers/blood , Blood-Brain Barrier/metabolism , Immunity, Humoral , Inflammation/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Aquaporin 4/blood , Astrocytes/metabolism , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Immunoglobulin G/metabolism , Inflammation/blood , Inflammation/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...