Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25871192

ABSTRACT

We study instabilities and relaxation to equilibrium in a long-range extension of the Fermi-Pasta-Ulam-Tsingou (FPU) oscillator chain by exciting initially the lowest Fourier mode. Localization in mode space is stronger for the long-range FPU model. This allows us to uncover the sporadic nature of instabilities, i.e., by varying initially the excitation amplitude of the lowest mode, which is the control parameter, instabilities occur in narrow amplitude intervals. Only for sufficiently large values of the amplitude, the system enters a permanently unstable regime. These findings also clarify the long-standing problem of the relaxation to equilibrium in the short-range FPU model. Because of the weaker localization in mode space of this latter model, the transfer of energy is retarded and relaxation occurs on a much longer timescale.

2.
Phys Rev Lett ; 102(2): 020602, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257260

ABSTRACT

We consider a damped beta-Fermi-Pasta-Ulam chain, driven at one boundary subjected to stochastic noise. It is shown that, for a fixed driving amplitude and frequency, increasing the noise intensity, the system's energy resonantly responds to the modulating frequency of the forcing signal. Multiple peaks appear in the signal-to-noise ratio, signaling the phenomenon of stochastic resonance. The presence of multiple peaks is explained by the existence of many stable and metastable states that are found when solving this boundary value problem for a semicontinuum approximation of the model. Stochastic resonance is shown to be generated by transitions between these states.

SELECTION OF CITATIONS
SEARCH DETAIL
...