Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1395035, 2024.
Article in English | MEDLINE | ID: mdl-38680493

ABSTRACT

Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.


Subject(s)
Antigens, Differentiation, Myelomonocytic , Apoptosis , Gene Expression Regulation , Transcription Factors , Humans , Leukocytes/immunology , Leukocytes/metabolism , Animals , Immunity, Innate , Transcription, Genetic , Inflammation/immunology , Signal Transduction
2.
Cell Death Differ ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37620540

ABSTRACT

IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.

3.
iScience ; 26(5): 106276, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168555

ABSTRACT

Ubiquitination is an important post-translational modification (PTM) that regulates a large spectrum of cellular processes in eukaryotes. Abnormalities in ubiquitin signaling underlie numerous human pathologies including cancer and neurodegeneration. Much progress has been made during the last three decades in understanding how ubiquitin ligases recognize their substrates and how ubiquitination is orchestrated. Several mechanisms of regulation have evolved to prevent promiscuity including the assembly of ubiquitin ligases in multi-protein complexes with dedicated subunits and specific post-translational modifications of these enzymes and their co-factors. Here, we outline another layer of complexity involving the coordinated access of E3 ligases to substrates. We provide an extensive inventory of ubiquitination crosstalk with multiple PTMs including SUMOylation, phosphorylation, methylation, acetylation, hydroxylation, prolyl isomerization, PARylation, and O-GlcNAcylation. We discuss molecular mechanisms by which PTMs orchestrate ubiquitination, thus increasing its specificity as well as its crosstalk with other signaling pathways to ensure cell homeostasis.

4.
J Biol Chem ; 298(8): 102198, 2022 08.
Article in English | MEDLINE | ID: mdl-35764170

ABSTRACT

Deubiquitinases (DUBs) are required for the reverse reaction of ubiquitination and act as major regulators of ubiquitin signaling processes. Emerging evidence suggests that these enzymes are regulated at multiple levels in order to ensure proper and timely substrate targeting and to prevent the adverse consequences of promiscuous deubiquitination. The importance of DUB regulation is highlighted by disease-associated mutations that inhibit or activate DUBs, deregulating their ability to coordinate cellular processes. Here, we describe the diverse mechanisms governing protein stability, enzymatic activity, and function of DUBs. In particular, we outline how DUBs are regulated by their protein domains and interacting partners. Intramolecular interactions can promote protein stability of DUBs, influence their subcellular localization, and/or modulate their enzymatic activity. Remarkably, these intramolecular interactions can induce self-deubiquitination to counteract DUB ubiquitination by cognate E3 ubiquitin ligases. In addition to intramolecular interactions, DUBs can also oligomerize and interact with a wide variety of cellular proteins, thereby forming obligate or facultative complexes that regulate their enzymatic activity and function. The importance of signaling and post-translational modifications in the integrated control of DUB function will also be discussed. While several DUBs are described with respect to the multiple layers of their regulation, the tumor suppressor BAP1 will be outlined as a model enzyme whose localization, stability, enzymatic activity, and substrate recognition are highly orchestrated by interacting partners and post-translational modifications.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin , Deubiquitinating Enzymes/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
5.
Nat Commun ; 12(1): 6984, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848715

ABSTRACT

Eukaryotic cells have evolved highly orchestrated protein catabolic machineries responsible for the timely and selective disposal of proteins and organelles, thereby ensuring amino acid recycling. However, how protein degradation is coordinated with amino acid supply and protein synthesis has remained largely elusive. Here we show that the mammalian proteasome undergoes liquid-liquid phase separation in the nucleus upon amino acid deprivation. We termed these proteasome condensates SIPAN (Starvation-Induced Proteasome Assemblies in the Nucleus) and show that these are a common response of mammalian cells to amino acid deprivation. SIPAN undergo fusion events, rapidly exchange proteasome particles with the surrounding milieu and quickly dissolve following amino acid replenishment. We further show that: (i) SIPAN contain K48-conjugated ubiquitin, (ii) proteasome inhibition accelerates SIPAN formation, (iii) deubiquitinase inhibition prevents SIPAN resolution and (iv) RAD23B proteasome shuttling factor is required for SIPAN formation. Finally, SIPAN formation is associated with decreased cell survival and p53-mediated apoptosis, which might contribute to tissue fitness in diverse pathophysiological conditions.


Subject(s)
Amino Acids/metabolism , Apoptosis/physiology , Cell Nucleus/metabolism , Proteasome Endopeptidase Complex/metabolism , Starvation , Animals , Autoantigens , Cell Line, Tumor , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Eukaryotic Cells , Exercise , Fibroblasts , Humans , Mice , Nutrients , Protein Biosynthesis , Proteolysis , Stress, Physiological , Ubiquitin
7.
PLoS Genet ; 17(3): e1009478, 2021 03.
Article in English | MEDLINE | ID: mdl-33770102

ABSTRACT

The tumor suppressor IKAROS binds and represses multiple NOTCH target genes. For their induction upon NOTCH signaling, IKAROS is removed and replaced by NOTCH Intracellular Domain (NICD)-associated proteins. However, IKAROS remains associated to other NOTCH activated genes upon signaling and induction. Whether IKAROS could participate to the induction of this second group of NOTCH activated genes is unknown. We analyzed the combined effect of IKAROS abrogation and NOTCH signaling on the expression of NOTCH activated genes in erythroid cells. In IKAROS-deleted cells, we observed that many of these genes were either overexpressed or no longer responsive to NOTCH signaling. IKAROS is then required for the organization of bivalent chromatin and poised transcription of NOTCH activated genes belonging to either of the aforementioned groups. Furthermore, we show that IKAROS-dependent poised organization of the NOTCH target Cdkn1a is also required for its adequate induction upon genotoxic insults. These results highlight the critical role played by IKAROS in establishing bivalent chromatin and transcriptional poised state at target genes for their activation by NOTCH or other stress signals.


Subject(s)
Gene Expression Regulation , Ikaros Transcription Factor/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Chromatin Immunoprecipitation Sequencing , Female , Ikaros Transcription Factor/genetics , Male , Mice , Mice, Knockout , Organ Specificity , Protein Binding , RNA, Small Interfering
9.
Exp Hematol ; 88: 68-82.e5, 2020 08.
Article in English | MEDLINE | ID: mdl-32682001

ABSTRACT

The myeloid nuclear differentiation antigen (MNDA) is a stress-induced protein that promotes degradation of the anti-apoptotic factor MCL-1 and apoptosis in myeloid cells. MNDA is also expressed in normal lymphoid cells and in B-cell clones isolated from individuals with chronic lymphocytic leukemia (CLL), a disease characterized by abnormal apoptosis control. We found that MNDA expression levels inversely correlate with the amount of the anti-apoptotic proteins MCL-1 and BCL-2 in human CLL samples. We report that in response to chemotherapeutic agents that induce genotoxic stress, MNDA exits its typical nucleolar localization and accumulates in the nucleoplasm of CLL and lymphoid cells. Then, MNDA binds chromatin at Mcl1 and Bcl2 genes and affects the transcriptional competence of RNA polymerase II. Our data also reveal that MNDA specifically associates with Mcl1 and Bcl2 (pre-) mRNAs and favors their rapid turnover as a prompt response to genotoxic stress. We propose that this rapid dynamic tuning of RNA levels, which leads to the destabilization of Mcl1 and Bcl2 transcripts, represents a post-transcriptional mechanism of apoptosis control in CLL cells. These results provide an explanation of previous clinical data and corroborate the finding that higher MNDA expression levels in CLL are associated with a better clinical course.


Subject(s)
Antigens, Differentiation, Myelomonocytic/metabolism , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Transcription Factors/metabolism , Aged , Aged, 80 and over , Antigens, Differentiation, Myelomonocytic/genetics , Apoptosis/genetics , Chromatin/genetics , Chromatin/metabolism , Female , HL-60 Cells , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Transcription Factors/genetics
10.
J Cell Sci ; 133(4)2020 02 24.
Article in English | MEDLINE | ID: mdl-32005696

ABSTRACT

USP16 (also known as UBP-M) has emerged as a histone H2AK119 deubiquitylase (DUB) implicated in the regulation of chromatin-associated processes and cell cycle progression. Despite this, available evidence suggests that this DUB is also present in the cytoplasm. How the nucleo-cytoplasmic transport of USP16, and hence its function, is regulated has remained elusive. Here, we show that USP16 is predominantly cytoplasmic in all cell cycle phases. We identified the nuclear export signal (NES) responsible for maintaining USP16 in the cytoplasm. We found that USP16 is only transiently retained in the nucleus following mitosis and then rapidly exported from this compartment. We also defined a non-canonical nuclear localization signal (NLS) sequence that plays a minimal role in directing USP16 into the nucleus. We further established that this DUB does not accumulate in the nucleus following DNA damage. Instead, only enforced nuclear localization of USP16 abolishes DNA double-strand break (DSB) repair, possibly due to unrestrained DUB activity. Thus, in contrast to the prevailing view, our data indicate that USP16 is actively excluded from the nucleus and that this DUB might indirectly regulate DSB repair.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cell Nucleus , Nuclear Export Signals , Active Transport, Cell Nucleus , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , Interphase , Nuclear Export Signals/genetics , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism
11.
PLoS Genet ; 15(11): e1008463, 2019 11.
Article in English | MEDLINE | ID: mdl-31675375

ABSTRACT

Nucleophosmin (NPM1) is frequently mutated or subjected to chromosomal translocation in acute myeloid leukemia (AML). NPM protein is primarily located in the nucleus, but the recurrent NPMc+ mutation, which creates a nuclear export signal, is characterized by cytoplasmic localization and leukemogenic properties. Similarly, the NPM-MLF1 translocation product favors the partial cytoplasmic retention of NPM. Regardless of their common cellular distribution, NPM-MLF1 malignancies engender different effects on hematopoiesis compared to NPMc+ counterparts, highlighting possible aberrant nuclear function(s) of NPM in NPMc+ and NPM-MLF1 AML. We performed a proteomic analysis and found that NPM and NPM-MLF1 interact with various nuclear proteins including subunits of the chromatin remodeling complexes ISWI, NuRD and P/BAF. Accordingly, NPM and NPM-MLF1 are recruited to transcriptionally active or repressed genes along with NuRD subunits. Although the overall gene expression program in NPM knockdown cells is similar to that resulting from NPMc+, NPM-MLF1 expression differentially altered gene transcription regulated by NPM. The abnormal gene regulation imposed by NPM-MLF1 can be characterized by the enhanced recruitment of NuRD to gene regulatory regions. Thus, different mechanisms would orchestrate the dysregulation of NPM function in NPMc+- versus NPM1-MLF1-associated leukemia.


Subject(s)
Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Adenosine Triphosphatases/genetics , Antibodies/genetics , Cell Line, Tumor , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mutation/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Nucleophosmin , Protein Interaction Domains and Motifs/genetics , Proteomics/methods , Translocation, Genetic/genetics
12.
J Biol Chem ; 290(48): 28643-63, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26416890

ABSTRACT

The deubiquitinase (DUB) and tumor suppressor BAP1 catalyzes ubiquitin removal from histone H2A Lys-119 and coordinates cell proliferation, but how BAP1 partners modulate its function remains poorly understood. Here, we report that BAP1 forms two mutually exclusive complexes with the transcriptional regulators ASXL1 and ASXL2, which are necessary for maintaining proper protein levels of this DUB. Conversely, BAP1 is essential for maintaining ASXL2, but not ASXL1, protein stability. Notably, cancer-associated loss of BAP1 expression results in ASXL2 destabilization and hence loss of its function. ASXL1 and ASXL2 use their ASXM domains to interact with the C-terminal domain (CTD) of BAP1, and these interactions are required for ubiquitin binding and H2A deubiquitination. The deubiquitination-promoting effect of ASXM requires intramolecular interactions between catalytic and non-catalytic domains of BAP1, which generate a composite ubiquitin-binding interface (CUBI). Notably, the CUBI engages multiple interactions with ubiquitin involving (i) the ubiquitin carboxyl hydrolase catalytic domain of BAP1, which interacts with the hydrophobic patch of ubiquitin, and (ii) the CTD domain, which interacts with a charged patch of ubiquitin. Significantly, we identified cancer-associated mutations of BAP1 that disrupt the CUBI and notably an in-frame deletion in the CTD that inhibits its interaction with ASXL1/2 and DUB activity and deregulates cell proliferation. Moreover, we demonstrated that BAP1 interaction with ASXL2 regulates cell senescence and that ASXL2 cancer-associated mutations disrupt BAP1 DUB activity. Thus, inactivation of the BAP1/ASXL2 axis might contribute to cancer development.


Subject(s)
Cell Proliferation , Neoplasms/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin-Specific Proteases/metabolism , HEK293 Cells , HeLa Cells , Histones/genetics , Histones/metabolism , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neoplasms/genetics , Neoplasms/pathology , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Ubiquitin-Specific Proteases/genetics
13.
Trends Genet ; 31(9): 500-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26049627

ABSTRACT

Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC) formation and assembly on chromatin. Interestingly, a few lineage-specific transcription factors, including IKAROS, also regulate transcription elongation. IKAROS is a tumor suppressor frequently inactivated in leukemia and associated with a poor prognosis. It forms a complex with the nucleosome remodeling and deacetylase (NuRD) complex and the positive transcription elongation factor b (P-TEFb), which is required for productive transcription elongation. It has also been reported that IKAROS interacts with factors involved in transcription termination. Here we review these and other recent findings that establish IKAROS as the first transcription factor found to act as a multifunctional regulator of the transcription cycle in hematopoietic cells.


Subject(s)
Chromatin Assembly and Disassembly , DNA Polymerase II/physiology , Ikaros Transcription Factor/physiology , Transcription, Genetic , Animals , Gene Expression Regulation , Humans
14.
PLoS Genet ; 10(12): e1004827, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25474253

ABSTRACT

IKAROS is a critical regulator of hematopoietic cell fate and its dynamic expression pattern is required for proper hematopoiesis. In collaboration with the Nucleosome Remodeling and Deacetylase (NuRD) complex, it promotes gene repression and activation. It remains to be clarified how IKAROS can support transcription activation while being associated with the HDAC-containing complex NuRD. IKAROS also binds to the Positive-Transcription Elongation Factor b (P-TEFb) at gene promoters. Here, we demonstrate that NuRD and P-TEFb are assembled in a complex that can be recruited to specific genes by IKAROS. The expression level of IKAROS influences the recruitment of the NuRD-P-TEFb complex to gene regulatory regions and facilitates transcription elongation by transferring the Protein Phosphatase 1α (PP1α), an IKAROS-binding protein and P-TEFb activator, to CDK9. We show that an IKAROS mutant that is unable to bind PP1α cannot sustain gene expression and impedes normal differentiation of Ik(NULL) hematopoietic progenitors. Finally, the knock-down of the NuRD subunit Mi2 reveals that the occupancy of the NuRD complex at transcribed regions of genes favors the relief of POL II promoter-proximal pausing and thereby, promotes transcription elongation.


Subject(s)
Chromatin Assembly and Disassembly , Hematopoiesis , Ikaros Transcription Factor/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Animals , COS Cells , Chlorocebus aethiops , Chromatin Assembly and Disassembly/genetics , Hematopoiesis/genetics , Humans , Ikaros Transcription Factor/genetics , Jurkat Cells , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mice , Mice, Knockout , Nucleosomes/metabolism , Protein Binding , RNA Polymerase II/metabolism , Transcriptional Activation
15.
Mol Cell Biol ; 33(16): 3064-76, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23732910

ABSTRACT

Ikaros (Ik) is a critical regulator of hematopoietic gene expression. Here, we established that the Ik interactions with GATA transcription factors and cyclin-dependent kinase 9 (Cdk9), a component of the positive transcription elongation factor b (P-TEFb), are required for transcriptional activation of Ik target genes. A detailed dissection of Ik-GATA and Ik-Cdk9 protein interactions indicated that the C-terminal zinc finger domain of Ik interacts directly with the C-terminal zinc fingers of GATA1, GATA2, and GATA3, whereas the N-terminal zinc finger domain of Ik is required for interaction with the kinase and T-loop domains of Cdk9. The relevance of these interactions was demonstrated in vivo in COS-7 and primary hematopoietic cells, in which Ik facilitated Cdk9 and GATA protein recruitment to gene promoters and transcriptional activation. Moreover, the oncogenic isoform Ik6 did not efficiently interact with Cdk9 or GATA proteins in vivo and perturbed Cdk9/P-TEFb recruitment to Ik target genes, thereby affecting transcription elongation. Finally, characterization of a novel nuclear Ik isoform revealed that Ik exon 6 is dispensable for interactions with Mi2 and GATA proteins but is essential for the Cdk9 interaction. Thus, Ik is central to the Ik-GATA-Cdk9 regulatory network, which is broadly utilized for gene regulation in hematopoietic cells.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , GATA1 Transcription Factor/metabolism , GATA2 Transcription Factor/metabolism , GATA3 Transcription Factor/metabolism , Hematopoiesis , Ikaros Transcription Factor/metabolism , Transcriptional Activation , Animals , Cell Line , Cells, Cultured , Cyclin-Dependent Kinase 9/chemistry , GATA1 Transcription Factor/chemistry , GATA2 Transcription Factor/chemistry , GATA3 Transcription Factor/chemistry , Ikaros Transcription Factor/chemistry , Mice , Protein Interaction Domains and Motifs , Protein Interaction Maps , Protein Isoforms/chemistry , Protein Isoforms/metabolism
16.
Cell Metab ; 17(3): 353-71, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23473031

ABSTRACT

In stroke and proliferative retinopathy, despite hypoxia driven angiogenesis, delayed revascularization of ischemic tissue aggravates the loss of neuronal function. What hinders vascular regrowth in the ischemic central nervous system remains largely unknown. Using the ischemic retina as a model of neurovascular interaction in the CNS, we provide evidence that the failure of reparative angiogenesis is temporally and spatially associated with endoplasmic reticulum (ER) stress. The canonical ER stress pathways of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme-1α (IRE1α) are activated within hypoxic/ischemic retinal ganglion neurons, initiating a cascade that results in angiostatic signals. Our findings demonstrate that the endoribonuclease IRE1α degrades the classical guidance cue netrin-1. This neuron-derived cue triggers a critical reparative-angiogenic switch in neural macrophage/microglial cells. Degradation of netrin-1, by persistent neuronal ER stress, thereby hinders vascular regeneration. These data identify a neuronal-immune mechanism that directly regulates reparative angiogenesis.


Subject(s)
Brain Ischemia/physiopathology , Endoplasmic Reticulum Stress/physiology , Endoribonucleases/metabolism , Neovascularization, Physiologic/physiology , Nerve Growth Factors/metabolism , Neurons/physiology , Protein Serine-Threonine Kinases/metabolism , Retina/physiopathology , Tumor Suppressor Proteins/metabolism , Animals , Blotting, Western , Clodronic Acid , Electrophoresis, Polyacrylamide Gel , Flow Cytometry , Genetic Vectors , Immunohistochemistry , Indoles , Lentivirus , Mice , Mice, Inbred C57BL , Microdissection , Netrin-1 , Real-Time Polymerase Chain Reaction , eIF-2 Kinase/metabolism
17.
Mol Cell Biol ; 32(18): 3624-38, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22778136

ABSTRACT

The transcription factor Hairy Enhancer of Split 1 (HES1), a downstream effector of the Notch signaling pathway, is an important regulator of hematopoiesis. Here, we demonstrate that in primary erythroid cells, Hes1 gene expression is transiently repressed around proerythroblast stage of differentiation. Using mouse erythroleukemia cells, we found that the RNA interference (RNAi)-mediated depletion of HES1 enhances erythroid cell differentiation, suggesting that this protein opposes terminal erythroid differentiation. This is also supported by the decreased primary erythroid cell differentiation upon HES1 upregulation in Ikaros-deficient mice. A comprehensive analysis led us to determine that Ikaros favors Hes1 repression in erythroid cells by facilitating recruitment of the master regulator of erythropoiesis GATA-1 alongside FOG-1, which mediates Hes1 repression. GATA-1 is then necessary for the chromatin binding of the NuRD remodeling complex ATPase MI-2, the transcription factor GFI1B, and the histone H3K27 methyltransferase EZH2 along with Polycomb repressive complex 2. We show that EZH2 is required for the transient repression of Hes1 in erythroid cells. In aggregate, our results describe a mechanism whereby GATA-1 utilizes Ikaros and Polycomb repressive complex 2 to promote Hes1 repression as an important step in erythroid cell differentiation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Erythropoiesis , GATA1 Transcription Factor/metabolism , Homeodomain Proteins/metabolism , Ikaros Transcription Factor/metabolism , Polycomb-Group Proteins/metabolism , Animals , COS Cells , Cell Differentiation/genetics , Cell Line , Chlorocebus aethiops , Chromatin/metabolism , Enhancer of Zeste Homolog 2 Protein , Gene Expression Regulation , Histones/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Nuclear Proteins , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic , Proto-Oncogene Proteins/metabolism , RNA Interference , RNA, Small Interfering , Repressor Proteins/metabolism , Transcription Factor HES-1 , Transcription Factors , Transcription, Genetic , Transcriptional Activation
18.
Front Immunol ; 3: 397, 2012.
Article in English | MEDLINE | ID: mdl-23293639

ABSTRACT

Sepsis and septic shock are characterized by prolonged inflammation and delayed resolution, which are associated with suppression of neutrophil apoptosis. The role of the intrinsic apoptotic pathway and intracellular factors in regulation of neutrophil apoptosis remain incompletely understood. We previously reported that the nuclear factor MNDA (myeloid nuclear differentiation antigen) is fundamental to execution of the constitutive neutrophil death program. During neutrophil apoptosis MNDA is cleaved by caspases and relocated to the cytoplasm. However, when challenged with known mediators of sepsis, human neutrophils of healthy donors or neutrophils from patients with sepsis exhibited impaired MNDA relocation/cleavage parallel with myeloid cell leukemia-1 (MCL-1) accumulation and suppression of apoptosis. MNDA knockdown in a model cell line indicated that upon induction of apoptosis, MNDA promotes proteasomal degradation of MCL-1, thereby aggravating mitochondrial dysfunction. Thus, MNDA is central to a novel nucleus-mitochondrion circuit that promotes progression of apoptosis. Disruption of this circuit contributes to neutrophil longevity, thereby identifying MNDA as a potential therapeutic target in sepsis and other inflammatory pathologies.

19.
ScientificWorldJournal ; 11: 1948-62, 2011.
Article in English | MEDLINE | ID: mdl-22125448

ABSTRACT

Neutrophil granulocytes have the shortest lifespan among leukocytes in the circulation and die via apoptosis. At sites of infection or tissue injury, prolongation of neutrophil lifespan is critical for effective host defense. Apoptosis of inflammatory neutrophils and their clearance are critical control points for termination of the inflammatory response. Evasion of neutrophil apoptosis aggravates local injury and leads to persistent tissue damage. The short-lived prosurvival Bcl-2 family protein, Mcl-1 (myeloid cell leukemia-1), is instrumental in controlling apoptosis and consequently neutrophil lifespan in response to rapidly changing environmental cues during inflammation. This paper will focus on multiple levels of control of Mcl-1 expression and function and will discuss targeting Mcl-1 as a potential therapeutic strategy to enhance the resolution of inflammation through accelerating neutrophil apoptosis.


Subject(s)
Apoptosis/physiology , Cell Survival/physiology , Neutrophils/cytology , Proto-Oncogene Proteins c-bcl-2/physiology , Humans , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/drug effects
20.
Nucleic Acids Res ; 39(9): 3505-19, 2011 May.
Article in English | MEDLINE | ID: mdl-21245044

ABSTRACT

Ikaros is associated with both gene transcriptional activation and repression in lymphocytes. Ikaros acts also as repressor of human γ-globin (huγ-) gene transcription in fetal and adult erythroid cells. Whether and eventually, how Ikaros can function as a transcriptional activator in erythroid cells remains poorly understood. Results presented herein demonstrate that Ikaros is a developmental-specific activator of huγ-gene expression in yolk sac erythroid cells. Molecular analysis in primary cells revealed that Ikaros interacts with Gata-1 and favors Brg1 recruitment to the human ß-globin Locus Control Region and the huγ-promoters, supporting long-range chromatin interactions between these regions. Additionally, we demonstrate that Ikaros contributes to transcription initiation and elongation of the huγ-genes, since it is not only required for TBP and RNA Polymerase II (Pol II) assembly at the huγ-promoters but also for conversion of Pol II into the elongation-competent phosphorylated form. In agreement with the latter, we show that Ikaros interacts with Cyclin-dependent kinase 9 (Cdk9), which contributes to efficient transcription elongation by phosphorylating the C-terminal domain of the large subunit of Pol II on Serine 2, and favours Cdk9 recruitment to huγ-promoters. Our results show that Ikaros exerts dual functionality during gene activation, by promoting efficient transcription initiation and elongation.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Erythroid Cells/metabolism , GATA1 Transcription Factor/metabolism , Ikaros Transcription Factor/metabolism , Transcriptional Activation , Animals , Cell Line , DNA Helicases/metabolism , Humans , Ikaros Transcription Factor/genetics , Locus Control Region , Mice , Mice, Knockout , Nuclear Proteins/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Yolk Sac/anatomy & histology , Yolk Sac/growth & development , gamma-Globulins/genetics , gamma-Globulins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...