Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2322321121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38728226

ABSTRACT

Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.


Subject(s)
Escherichia coli , Escherichia coli/physiology , Models, Biological , Biodiversity , Ecosystem
2.
PLoS Comput Biol ; 19(12): e1010868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039342

ABSTRACT

Competition is ubiquitous in microbial communities, shaping both their spatial and temporal structure and composition. Classical minimal models of competition, such as the Moran model, have been employed in ecology and evolutionary biology to understand the role of fixation and invasion in the maintenance of population diversity. Informed by recent experimental studies of cellular competition in confined spaces, we extend the Moran model to incorporate mechanical interactions between cells that divide within the limited space of a one-dimensional open microchannel. The model characterizes the skewed collective growth of the cells dividing within the channel, causing cells to be expelled at the channel ends. The results of this spatial exclusion model differ significantly from those of its classical well-mixed counterpart. The mean time to fixation of a species is greatly accelerated, scaling logarithmically, rather than algebraically, with the system size, and fixation/extinction probability sharply depends on the species' initial fractional abundance. By contrast, successful takeovers by invasive species, whether through mutation or immigration, are substantially less likely than in the Moran model. We also find that the spatial exclusion tends to attenuate the effects of fitness differences on the fixation times and probabilities. We find that these effects arise from the combination of the quasi-neutral "tug-of-war" diffusion dynamics of the inter-species boundary around an unstable equipoise point and the quasi-deterministic avalanche dynamics away from the fixed point. These results, which can be tested in microfluidic monolayer devices, have implications for the maintenance of species diversity in dense bacterial and cellular ecosystems where spatial exclusion is central to the competition, such as in organized biofilms or intestinal crypts.


Subject(s)
Ecosystem , Microbiota , Population Dynamics , Biological Evolution , Introduced Species , Models, Biological
3.
Biophys J ; 121(17): 3175-3187, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35927960

ABSTRACT

Single-molecule counting techniques enable a precise determination of the intracellular abundance and stoichiometry of proteins and macromolecular complexes. These details are often challenging to quantitatively assess yet are essential for our understanding of cellular function. Consider G-protein-coupled receptors-an expansive class of transmembrane signaling proteins that participate in many vital physiological functions making them a popular target for drug development. While early evidence for the role of oligomerization in receptor signaling came from ensemble biochemical and biophysical assays, innovations in single-molecule measurements are now driving a paradigm shift in our understanding of its relevance. Here, we review recent developments in single-molecule counting with a focus on photobleaching step counting and the emerging technique of quantitative single-molecule localization microscopy-with a particular emphasis on the potential for these techniques to advance our understanding of the role of oligomerization in G-protein-coupled receptor signaling.


Subject(s)
Nanotechnology , Receptors, G-Protein-Coupled , Microscopy, Fluorescence/methods , Photobleaching , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
4.
Small Methods ; 5(5): e2001180, 2021 05.
Article in English | MEDLINE | ID: mdl-34928085

ABSTRACT

An ultrastable, highly dense single-molecule assay ideal for observing protein-DNA interactions is demonstrated. Stable click tethered particle motion leverages next generation click-chemistry to achieve an ultrahigh density of surface tethered reporter particles, and has low non-specific interactions, is stable at elevated temperatures to at least 45 °C, and is compatible with Mg2+ , an important ionic component of many regulatory protein-DNA interactions. Prepared samples remain stable, with little degradation, for >6 months in physiological buffers. These improvements enable the authors to study previously inaccessible sequence and temperature-dependent effects on DNA binding by the bacterial protein, histone-like nucleoid-structuring protein, a global transcriptional regulator found in Escherichia coli. This greatly improved assay can directly be translated to accelerate existing tethered particle-based, single-molecule biosensing applications.


Subject(s)
Bacterial Proteins/metabolism , DNA/metabolism , Bacterial Proteins/chemistry , DNA/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Histones/metabolism , Protein Binding , Temperature
5.
ACS Infect Dis ; 7(11): 3052-3061, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34617443

ABSTRACT

Antimicrobial photodynamic therapy (APDT) employs a photosensitizer, light, and molecular oxygen to treat infectious diseases via oxidative damage, with a low likelihood for the development of resistance. For optimal APDT efficacy, photosensitizers with cationic charges that can permeate bacteria cells and bind intracellular targets are desired to not limit oxidative damage to the outer bacterial structure. Here we report the application of brominated DAPI (Br-DAPI), a water-soluble, DNA-binding photosensitizer for the eradication of both Gram-negative and Gram-positive bacteria (as demonstrated on N99 Escherichia coli and Bacillus subtilis, respectively). We observe intracellular uptake of Br-DAPI, ROS-mediated bacterial cell death via one- and two-photon excitation, and selective photocytotoxicity of bacteria over mammalian cells. Photocytotoxicity of both N99 E. coli and B. subtilis occurred at submicromolar concentrations (IC50 = 0.2-0.4 µM) and low light doses (5 min irradiation times, 4.5 J cm-2 dose), making it superior to commonly employed APDT phenothiazinium photosensitizers such as methylene blue. Given its high potency and two-photon excitability, Br-DAPI is a promising novel photosensitizer for in vivo APDT applications.


Subject(s)
Escherichia coli , Photosensitizing Agents , Animals , Bacteria , DNA , Light , Photosensitizing Agents/pharmacology , Staphylococcus aureus , Water
6.
Biophys J ; 120(18): 3901-3910, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34437847

ABSTRACT

In recent years, there have been significant advances in quantifying molecule copy number and protein stoichiometry with single-molecule localization microscopy (SMLM). However, as the density of fluorophores per diffraction-limited spot increases, distinguishing between detection events from different fluorophores becomes progressively more difficult, affecting the accuracy of such measurements. Although essential to the design of quantitative experiments, the dynamic range of SMLM counting techniques has not yet been studied in detail. Here, we provide a working definition of the dynamic range for quantitative SMLM in terms of the relative number of missed localizations or blinks and explore the photophysical and experimental parameters that affect it. We begin with a simple two-state model of blinking fluorophores, then extend the model to incorporate photobleaching and temporal binning by the detection camera. From these models, we first show that our estimates of the dynamic range agree with realistic simulations of the photoswitching. We find that the dynamic range scales inversely with the duty cycle when counting both blinks and localizations. Finally, we validate our theoretical approach on direct stochastic optical reconstruction microscopy (dSTORM) data sets of photoswitching Alexa Fluor 647 dyes. Our results should help guide researchers in designing and implementing SMLM-based molecular counting experiments.


Subject(s)
Microscopy , Single Molecule Imaging , Fluorescent Dyes
7.
Bioinform Adv ; 1(1): vbab032, 2021.
Article in English | MEDLINE | ID: mdl-36700088

ABSTRACT

Motivation: Single-molecule localization microscopy (SMLM) is a super-resolution technique capable of rendering nanometer scale images of cellular structures. Recently, much effort has gone into developing algorithms for extracting quantitative features from SMLM datasets, such as the abundance and stoichiometry of macromolecular complexes. These algorithms often require knowledge of the complicated photophysical properties of photoswitchable fluorophores. Results: Here, we develop a calibration-free approach to quantitative SMLM built upon the observation that most photoswitchable fluorophores emit a geometrically distributed number of blinks before photobleaching. From a statistical model of a mixture of monomers, dimers and trimers, the method employs an adapted expectation-maximization algorithm to learn the protomer fractions while simultaneously determining the single-fluorophore blinking distribution. To illustrate the utility of our approach, we benchmark it on both simulated datasets and experimental datasets assembled from SMLM images of fluorescently labeled DNA nanostructures. Availability and implementation: An implementation of our algorithm written in Python is available at: https://www.utm.utoronto.ca/milsteinlab/resources/Software/MMCode/. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

8.
PLoS Comput Biol ; 16(12): e1008479, 2020 12.
Article in English | MEDLINE | ID: mdl-33290385

ABSTRACT

Single-molecule localization microscopy (SMLM) is a powerful tool for studying intracellular structure and macromolecular organization at the nanoscale. The increasingly massive pointillistic data sets generated by SMLM require the development of new and highly efficient quantification tools. Here we present FOCAL3D, an accurate, flexible and exceedingly fast (scaling linearly with the number of localizations) density-based algorithm for quantifying spatial clustering in large 3D SMLM data sets. Unlike DBSCAN, which is perhaps the most commonly employed density-based clustering algorithm, an optimum set of parameters for FOCAL3D may be objectively determined. We initially validate the performance of FOCAL3D on simulated datasets at varying noise levels and for a range of cluster sizes. These simulated datasets are used to illustrate the parametric insensitivity of the algorithm, in contrast to DBSCAN, and clustering metrics such as the F1 and Silhouette score indicate that FOCAL3D is highly accurate, even in the presence of significant background noise and mixed populations of variable sized clusters, once optimized. We then apply FOCAL3D to 3D astigmatic dSTORM images of the nuclear pore complex (NPC) in human osteosaracoma cells, illustrating both the validity of the parameter optimization and the ability of the algorithm to accurately cluster complex, heterogeneous 3D clusters in a biological dataset. FOCAL3D is provided as an open source software package written in Python.


Subject(s)
Imaging, Three-Dimensional/methods , Single Molecule Imaging/methods , Algorithms , Cluster Analysis , Datasets as Topic , Humans , Nuclear Pore/ultrastructure , Osteosarcoma/ultrastructure , Programming Languages , Software , Tumor Cells, Cultured
9.
ACS Sens ; 5(9): 2753-2762, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32803944

ABSTRACT

Antibiotic resistance is a major problem for world health, triggered by the unnecessary usage of broad-spectrum antibiotics on purportedly infected patients. Current clinical standards require lengthy protocols for the detection of bacterial species in sterile physiological fluids. In this work, a class of small-molecule fluorescent chemosensors termed ProxyPhos was shown to be capable of rapid, sensitive, and facile detection of broad-spectrum bacteria. The sensors act via a turn-on fluorescent excimer mechanism, where close-proximity binding of multiple sensor units amplifies a red shift emission signal. ProxyPhos sensors were able to detect down to 10 CFUs of model strains by flow cytometry assays and showed selectivity over mammalian cells in a bacterial coculture through fluorescence microscopy. The studies reveal that the zinc(II)-chelates cyclen and cyclam are novel and effective binding units for the detection of both Gram-negative and Gram-positive bacterial strains. Mode of action studies revealed that the chemosensors detect Gram-negative and Gram-positive strains with two distinct mechanisms. Preliminary studies applying ProxyPhos sensors to sterile physiological fluids (cerebrospinal fluid) in flow cytometry assays were successful. The results suggest that ProxyPhos sensors can be developed as a rapid, inexpensive, and robust tool for the "yes-no" detection of broad-spectrum bacteria in sterile fluids.


Subject(s)
Bacteria , Fluorescent Dyes , Animals , Humans , Microscopy, Fluorescence , Zinc
10.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31481544

ABSTRACT

The heat-stable nucleoid-structuring (H-NS) protein is a global transcriptional regulator implicated in coordinating the expression of over 200 genes in Escherichia coli, including many involved in adaptation to osmotic stress. We have applied superresolved microscopy to quantify the intracellular and spatial reorganization of H-NS in response to a rapid osmotic shift. We found that H-NS showed growth phase-dependent relocalization in response to hyperosmotic shock. In stationary phase, H-NS detached from a tightly compacted bacterial chromosome and was excluded from the nucleoid volume over an extended period of time. This behavior was absent during rapid growth but was induced by exposing the osmotically stressed culture to a DNA gyrase inhibitor, coumermycin. This chromosomal compaction/H-NS exclusion phenomenon occurred in the presence of either potassium or sodium ions and was independent of the presence of stress-responsive sigma factor σS and of the H-NS paralog StpA.IMPORTANCE The heat-stable nucleoid-structuring (H-NS) protein coordinates the expression of over 200 genes in E. coli, with a large number involved in both bacterial virulence and drug resistance. We report on the novel observation of a dynamic compaction of the bacterial chromosome in response to exposure to high levels of salt. This stress response results in the detachment of H-NS proteins and their subsequent expulsion to the periphery of the cells. We found that this behavior is related to mechanical properties of the bacterial chromosome, in particular, to how tightly twisted and coiled is the chromosomal DNA. This behavior might act as a biomechanical response to stress that coordinates the expression of genes involved in adapting bacteria to a salty environment.


Subject(s)
Chromosomes, Bacterial/drug effects , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Fimbriae Proteins/genetics , Gene Expression Regulation, Bacterial , Osmotic Pressure , Potassium Chloride/pharmacology , Adaptation, Physiological , Aminocoumarins/pharmacology , Cations, Monovalent , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/ultrastructure , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/growth & development , Escherichia coli/ultrastructure , Escherichia coli Proteins/metabolism , Fimbriae Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Potassium/metabolism , Protein Transport/drug effects , Sigma Factor/genetics , Sigma Factor/metabolism , Sodium/metabolism , Topoisomerase II Inhibitors/pharmacology , Transcription, Genetic
11.
PLoS One ; 13(2): e0193402, 2018.
Article in English | MEDLINE | ID: mdl-29474494

ABSTRACT

Advances in light shaping techniques are leading to new tools for optical trapping and micromanipulation. For example, optical tweezers made from Laguerre-Gaussian or donut beams display an increased axial trap strength and can impart angular momentum to rotate a specimen. However, the application of donut beam optical tweezers to precision, biophysical measurements remains limited due to a lack of methods for calibrating such devices sufficiently. For instance, one notable complication, not present when trapping with a Gaussian beam, is that the polarization of the trap light can significantly affect the tweezers' strength as well as the location of the trap. In this article, we show how to precisely calibrate the axial trap strength as a function of height above the coverslip surface while accounting for focal shifts in the trap position arising from radiation pressure, mismatches in the index of refraction, and polarization induced intensity variations. This provides a foundation for implementing a donut beam optical tweezers capable of applying precise axial forces.


Subject(s)
Calibration , Optical Tweezers , Equipment Design , Lasers , Light
12.
Biophys J ; 112(9): 1777-1785, 2017 May 09.
Article in English | MEDLINE | ID: mdl-28494949

ABSTRACT

Superresolved localization microscopy has the potential to serve as an accurate, single-cell technique for counting the abundance of intracellular molecules. However, the stochastic blinking of single fluorophores can introduce large uncertainties into the final count. Here we provide a theoretical foundation for applying superresolved localization microscopy to the problem of molecular counting based on the distribution of blinking events from a single fluorophore. We also show that by redundantly tagging single molecules with multiple, blinking fluorophores, the accuracy of the technique can be enhanced by harnessing the central limit theorem. The coefficient of variation then, for the number of molecules M estimated from a given number of blinks B, scales like ∼1/Nl, where Nl is the mean number of labels on a target. As an example, we apply our theory to the challenging problem of quantifying the cell-to-cell variability of plasmid copy number in bacteria.


Subject(s)
Microscopy/methods , Molecular Imaging/methods , Bacteria/genetics , Bacteria/virology , Bayes Theorem , Models, Theoretical , Plasmids/genetics , Stochastic Processes
13.
Biophys J ; 111(3): 467-479, 2016 Aug 09.
Article in English | MEDLINE | ID: mdl-27508432

ABSTRACT

The maintenance of high-copy number plasmids within bacteria had been commonly thought to result from free diffusion and random segregation. Recent microscopy experiments, however, observed high-copy number plasmids clustering into discrete foci, which seemed to contradict this model, and hinted at an undiscovered active mechanism, as often found in low-copy number plasmids. We recently investigated the cellular organization of a ColE1-derivative plasmid in Escherichia coli bacteria using quantitative superresolved microscopy based on single-molecule localization in combination with single-molecule fluorescence in situ hybridization (smFISH). We observed that many of the plasmids aggregated into large clusters, although most of the plasmids were randomly distributed throughout the bacteria, minus an excluded volume about the chromosomal DNA. Our results indicate that neither of the previous models completely encompasses the behavior of high-copy number plasmids. We also found many plasmids within the chromosomal volume, providing further evidence that the nucleoid does not fully exclude DNA and RNA.


Subject(s)
DNA, Bacterial/genetics , Gene Dosage , Microscopy , Plasmids/genetics , Escherichia coli/genetics , In Situ Hybridization, Fluorescence , RNA, Bacterial/genetics
14.
Annu Rev Microbiol ; 70: 199-213, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27359215

ABSTRACT

The H-NS (heat-stable nucleoid structuring) protein affects both nucleoid compaction and global gene regulation. H-NS appears to act primarily as a silencer of AT-rich genetic material acquired by horizontal gene transfer. As such, it is key in the regulation of most genes involved in virulence and in adaptation to new environmental niches. Here we review recent progress in understanding the biochemistry of H-NS and how xenogeneic silencing affects bacterial evolution. We highlight the strengths and weaknesses of some of the models proposed in H-NS-mediated nucleoprotein complex formation. Based on recent single-molecule studies, we also propose a novel mode of DNA compaction by H-NS termed intrabridging to explain over two decades of observations of the H-NS molecule.


Subject(s)
Bacteria/genetics , Genome, Bacterial , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Gene Silencing
15.
Opt Express ; 23(22): 28857-67, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561154

ABSTRACT

Conventional optical tweezers suffer from several complications when applying axial forces to surface-tethered molecules. Aberrations from the refractive-index mismatch between an oil-immersion objective's medium and the aqueous trapping environment both shift the trap centre and degrade the trapping strength with focal depth. Furthermore, interference effects from back-scattered light make it difficult to use back-focal-plane interferometry for high-bandwidth position detection. Holographic optical tweezers were employed to correct for aberrations to achieve a constant axial stiffness and modulate artifacts from backscattered light. Once the aberrations are corrected for, the trap height can be precisely determined from either the back-scattered light or Brenner's formula.

16.
PLoS One ; 10(11): e0142277, 2015.
Article in English | MEDLINE | ID: mdl-26535902

ABSTRACT

Studying the mechanical properties of short segments of dsDNA can provide insight into various biophysical phenomena, from DNA looping to the organization of nucleosomes. Scanning atomic force microscopy (AFM) is able to acquire images of single DNA molecules with near-basepair resolution. From many images, one may use equilibrium statistical mechanics to quantify the intrinsic stiffness (or persistence length) of the DNA. However, this approach is highly dependent upon both the correct microscopic polymer model and a correct image analysis of DNA contours. These complications have led to significant debate over the flexibility of dsDNA at short length scales. We first show how to extract accurate measures of DNA contour lengths by calibrating to DNA traces of simulated AFM data. After this calibration, we show that DNA adsorbed on an aminopropyl-mica surface behaves as a worm-like chain (WLC) for contour lengths as small as ~20 nm. We also show that a DNA binding protein can modify the mechanics of the DNA from that of a WLC.


Subject(s)
DNA/chemistry , Microscopy, Atomic Force/methods , Monte Carlo Method , Nucleic Acid Conformation
17.
Biophys J ; 108(12): 2759-66, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26083913

ABSTRACT

Optical tweezers have revolutionized our understanding of the microscopic world. Axial optical tweezers, which apply force to a surface-tethered molecule by directly moving either the trap or the stage along the laser beam axis, offer several potential benefits when studying a range of novel biophysical phenomena. This geometry, although it is conceptually straightforward, suffers from aberrations that result in variation of the trap stiffness when the distance between the microscope coverslip and the trap focus is being changed. Many standard techniques, such as back-focal-plane interferometry, are difficult to employ in this geometry due to back-scattered light between the bead and the coverslip, whereas the noise inherent in a surface-tethered assay can severely limit the resolution of an experiment. Because of these complications, precision force spectroscopy measurements have adapted alternative geometries such as the highly successful dumbbell traps. In recent years, however, most of the difficulties inherent in constructing a precision axial optical tweezers have been solved. This review article aims to inform the reader about recent progress in axial optical trapping, as well as the potential for these devices to perform innovative biophysical measurements.


Subject(s)
Optical Tweezers , Spectrum Analysis/instrumentation , Spectrum Analysis/methods
18.
Nucleic Acids Res ; 42(19): 11921-7, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25274732

ABSTRACT

The bacterial chromosome is under varying levels of mechanical stress due to a high degree of crowding and dynamic protein-DNA interactions experienced within the nucleoid. DNA tension is difficult to measure in cells and its functional significance remains unclear although in vitro experiments have implicated a range of biomechanical phenomena. Using single-molecule tools, we have uncovered a novel protein-DNA interaction that responds to fluctuations in mechanical tension by condensing DNA. We combined tethered particle motion (TPM) and optical tweezers experiments to probe the effects of tension on DNA in the presence of the Hha/H-NS complex. The nucleoid structuring protein H-NS is a key regulator of DNA condensation and gene expression in enterobacteria and its activity in vivo is affected by the accessory factor Hha. We find that tension, induced by optical tweezers, causes the rapid compaction of DNA in the presence of the Hha/H-NS complex, but not in the presence of H-NS alone. Our results imply that H-NS requires Hha to condense bacterial DNA and that this condensation could be triggered by the level of mechanical tension experienced along different regions of the chromosome.


Subject(s)
Bacterial Proteins/metabolism , DNA Packaging , DNA-Binding Proteins/metabolism , Bacterial Proteins/genetics , Biomechanical Phenomena , DNA, Bacterial/metabolism , DNA-Binding Proteins/genetics , Mutation
19.
Nano Lett ; 12(5): 2515-9, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22463480

ABSTRACT

We have developed a correlation microscopy technique to follow the dynamics of quantum dot labeled DNA within living cells. The temporal correlation functions of the labels reflect the fluctuations of the DNA nanoprobe as a result of its interactions with the cellular environment. They provide a sensitive measure for the length of the probe on the scale of a persistence length (∼50 nm) and reveal strong nonthermal dynamics of the cell. These results pave the way for dynamic observations of DNA conformational changes in vivo.


Subject(s)
Color , DNA Probes , Nanotechnology
20.
J Vis Exp ; (56): e3405, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-22025209

ABSTRACT

Single-molecule techniques for stretching DNA of contour lengths less than a kilobase are fraught with experimental difficulties. However, many interesting biological events such as histone binding and protein-mediated looping of DNA, occur on this length scale. In recent years, the mechanical properties of DNA have been shown to play a significant role in fundamental cellular processes like the packaging of DNA into compact nucleosomes and chromatin fibers. Clearly, it is then important to understand the mechanical properties of short stretches of DNA. In this paper, we provide a practical guide to a single-molecule optical tweezing technique that we have developed to study the mechanical behavior of DNA with contour lengths as short as a few hundred basepairs. The major hurdle in stretching short segments of DNA is that conventional optical tweezers are generally designed to apply force in a direction lateral to the stage (see Fig. 1). In this geometry, the angle between the bead and the coverslip, to which the DNA is tethered, becomes very steep for submicron length DNA. The axial position must now be accounted for, which can be a challenge, and, since the extension drags the microsphere closer to the coverslip, steric effects are enhanced. Furthermore, as a result of the asymmetry of the microspheres, lateral extensions will generate varying levels of torque due to rotation of the microsphere within the optical trap since the direction of the reactive force changes during the extension. Alternate methods for stretching submicron DNA run up against their own unique hurdles. For instance, a dual-beam optical trap is limited to stretching DNA of around a wavelength, at which point interference effects between the two traps and from light scattering between the microspheres begin to pose a significant problem. Replacing one of the traps with a micropipette would most likely suffer from similar challenges. While one could directly use the axial potential to stretch the DNA, an active feedback scheme would be needed to apply a constant force and the bandwidth of this will be quite limited, especially at low forces. We circumvent these fundamental problems by directly pulling the DNA away from the coverslip by using a constant force axial optical tweezers. This is achieved by trapping the bead in a linear region of the optical potential, where the optical force is constant-the strength of which can be tuned by adjusting the laser power. Trapping within the linear region also serves as an all optical force-clamp on the DNA that extends for nearly 350 nm in the axial direction. We simultaneously compensate for thermal and mechanical drift by finely adjusting the position of the stage so that a reference microsphere stuck to the coverslip remains at the same position and focus, allowing for a virtually limitless observation period.


Subject(s)
DNA/chemistry , Optical Tweezers
SELECTION OF CITATIONS
SEARCH DETAIL
...