Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Hepatol ; 79(4): 924-932, 2023 10.
Article in English | MEDLINE | ID: mdl-37290591

ABSTRACT

BACKGROUND & AIMS: Current therapy for chronic hepatitis B virus (cHBV) infection involves lifelong treatment. New treatments that enable HBV functional cure would represent a clinically meaningful advance. ALN-HBV and VIR-2218 are investigational RNA interference therapeutics that target all major HBV transcripts. METHODS: We report on: i) the safety of single doses of VIR-2218 (modified from ALN-HBV by enhanced stabilization chemistry plus technology to reduce off-target, seed-mediated binding while maintaining on-target antiviral activity) and ALN-HBV in humanized mice; ii) a cross-study comparison of the safety of single doses of VIR-2218 and ALN-HBV in healthy human volunteers (n = 24 and n = 49, respectively); and iii) the antiviral activity of two doses of 20, 50, 100, 200 mg of VIR-2218 (total n = 24) vs. placebo (n = 8), given 4 weeks apart, in participants with cHBV infection. RESULTS: In humanized mice, alanine aminotransferase (ALT) levels were markedly lower following administration of VIR-2218 compared with ALN-HBV. In healthy volunteers, post-treatment ALT elevations occurred in 28% of participants receiving ALN-HBV compared with none in those receiving VIR-2218. In participants with cHBV infection, VIR-2218 was associated with dose-dependent reductions in hepatitis B surface antigen (HBsAg). The greatest mean reduction of HBsAg at Week 20 in participants receiving 200 mg was 1.65 log IU/ml. The HBsAg reduction was maintained at 0.87 log IU/ml at Week 48. No participants had serum HBsAg loss or hepatitis B surface antibody seroconversion. CONCLUSIONS: VIR-2218 demonstrated an encouraging hepatic safety profile in preclinical and clinical studies as well as dose-dependent HBsAg reductions in patients with cHBV infection. These data support future studies with VIR-2218 as part of combination regimens with a goal of HBV functional cure. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT02826018 and NCT03672188. IMPACT AND IMPLICATIONS: A significant unmet need exists for therapies for chronic HBV (cHBV) infection that achieve functional cure. We report clinical and non-clinical data on two investigational small-interfering RNAs that target HBx, ALN-HBV and VIR-2218, demonstrating that incorporation of enhanced stabilization chemistry plus technology in VIR-2218 reduces its propensity to cause ALT elevations relative to its parent compound, ALN-HBV. We also show that VIR-2218 reduces hepatitis B surface antigen levels in a dose-dependent manner in participants with cHBV infection. These studies support the continued development of VIR-2218 as part of therapeutic regimens for cHBV infection, with the goal of a functional cure, and are important for HBV researchers and physicians.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Animals , Mice , Hepatitis B, Chronic/drug therapy , Hepatitis B virus , Hepatitis B Surface Antigens , RNAi Therapeutics , Randomized Controlled Trials as Topic , Antiviral Agents , DNA, Viral , Hepatitis B e Antigens , Hepatitis B/drug therapy
2.
Nucleic Acids Res ; 51(7): e41, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36840708

ABSTRACT

A major challenge confronting the clinical application of site-directed RNA editing (SDRE) is the design of small guide RNAs (gRNAs) that can drive efficient editing. Although many gRNA designs have effectively recruited endogenous Adenosine Deaminases that Act on RNA (ADARs), most of them exceed the size of currently FDA-approved antisense oligos. We developed an unbiased in vitro selection assay to identify short gRNAs that promote superior RNA editing of a premature termination codon. The selection assay relies on hairpin substrates in which the target sequence is linked to partially randomized gRNAs in the same molecule, so that gRNA sequences that promote editing can be identified by sequencing. These RNA substrates were incubated in vitro with ADAR2 and the edited products were selected using amplification refractory mutation system PCR and used to regenerate the substrates for a new round of selection. After nine repetitions, hairpins which drove superior editing were identified. When gRNAs of these hairpins were delivered in trans, eight of the top ten short gRNAs drove superior editing both in vitro and in cellula. These results show that efficient small gRNAs can be selected using our approach, an important advancement for the clinical application of SDRE.


Subject(s)
RNA Editing , RNA, Guide, CRISPR-Cas Systems , Base Sequence , Codon, Nonsense , Mutation , RNA Editing/genetics
3.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Article in English | MEDLINE | ID: mdl-35654979

ABSTRACT

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Subject(s)
Amyloid beta-Protein Precursor , RNAi Therapeutics , Animals , Mice , Primates/genetics , Primates/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use
4.
Nucleic Acids Res ; 50(12): 6656-6670, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736224

ABSTRACT

Preclinical mechanistic studies have pointed towards RNA interference-mediated off-target effects as a major driver of hepatotoxicity for GalNAc-siRNA conjugates. Here, we demonstrate that a single glycol nucleic acid or 2'-5'-RNA modification can substantially reduce small interfering RNA (siRNA) seed-mediated binding to off-target transcripts while maintaining on-target activity. In siRNAs with established hepatotoxicity driven by off-target effects, these novel designs with seed-pairing destabilization, termed enhanced stabilization chemistry plus (ESC+), demonstrated a substantially improved therapeutic window in rats. In contrast, siRNAs thermally destabilized to a similar extent by the incorporation of multiple DNA nucleotides in the seed region showed little to no improvement in rat safety suggesting that factors in addition to global thermodynamics play a role in off-target mitigation. We utilized the ESC+ strategy to improve the safety of ALN-HBV, which exhibited dose-dependent, transient and asymptomatic alanine aminotransferase elevations in healthy volunteers. The redesigned ALN-HBV02 (VIR-2218) showed improved specificity with comparable on-target activity and the program was reintroduced into clinical development.


Subject(s)
RNA, Small Interfering , Animals , Rats , RNA, Small Interfering/genetics
6.
Gastroenterology ; 158(6): 1762-1775.e9, 2020 05.
Article in English | MEDLINE | ID: mdl-32001321

ABSTRACT

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection persists because the virus-specific immune response is dysfunctional. Therapeutic vaccines might be used to end immune tolerance to the virus in patients with chronic infection, but these have not been effective in patients so far. In patients with chronic HBV infection, high levels of virus antigens might prevent induction of HBV-specific immune responses. We investigated whether knocking down expression levels of HBV antigens in liver might increase the efficacy of HBV vaccines in mice. METHODS: We performed studies with male C57BL/6 mice that persistently replicate HBV (genotype D, serotype ayw)-either from a transgene or after infection with an adeno-associated virus that transferred an overlength HBV genome-and expressed HB surface antigen at levels relevant to patients. Small hairpin or small interfering (si)RNAs against the common 3'-end of all HBV transcripts were used to knock down antigen expression in mouse hepatocytes. siRNAs were chemically stabilized and conjugated to N-acetylgalactosamine to increase liver uptake. Control mice were given either entecavir or non-HBV-specific siRNAs and vaccine components. Eight to 12 weeks later, mice were immunized twice with a mixture of adjuvanted HBV S and core antigen, followed by a modified Vaccinia virus Ankara vector to induce HBV-specific B- and T-cell responses. Serum and liver samples were collected and analyzed for HBV-specific immune responses, liver damage, and viral parameters. RESULTS: In both models of HBV infection, mice that express hepatocyte-specific small hairpin RNAs or that were given subcutaneous injections of siRNAs had reduced levels of HBV antigens, HBV replication, and viremia (1-3 log10 reduction) compared to mice given control RNAs. Vaccination induced production of HBV-neutralizing antibodies and increased numbers and functionality of HBV-specific, CD8+ T cells in mice with low, but not in mice with high, levels of HBV antigen. Mice with initially high titers of HBV and knockdown of HBV antigen expression, but not mice with reduced viremia after administration of entecavir, developed polyfunctional, HBV-specific CD8+ T cells, and HBV was eliminated. CONCLUSIONS: In mice with high levels of HBV replication, knockdown of HBV antigen expression along with a therapeutic vaccination strategy, but not knockdown alone, increased numbers of effector T cells and eliminated the virus. These findings indicate that high titers of virus antigens reduce the efficacy of therapeutic vaccination. Anti-HBV siRNAs and therapeutic vaccines are each being tested in clinical trials-their combination might cure chronic HBV infection.


Subject(s)
Hepatitis B Surface Antigens/genetics , Hepatitis B Vaccines/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/therapy , RNA, Small Interfering/administration & dosage , Animals , B-Lymphocytes/immunology , Carrier State/immunology , Carrier State/virology , Combined Modality Therapy/methods , Disease Models, Animal , Female , Gene Knockdown Techniques , Hepatitis B Surface Antigens/immunology , Hepatitis B Vaccines/administration & dosage , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/diagnosis , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatocytes/virology , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Male , Mice , T-Lymphocytes, Cytotoxic/immunology , Virus Replication/genetics , Virus Replication/immunology
7.
Cell Metab ; 29(3): 727-735.e3, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30840913

ABSTRACT

The liver plays a central role in metabolism; however, xenobiotic metabolism variations between human hepatocytes and those in model organisms create challenges in establishing functional test beds to detect the potential drug toxicity and efficacy of candidate small molecules. In the emerging areas of RNA interference, viral gene therapy, and genome editing, more robust, long-lasting, and predictive human liver models may accelerate progress. Here, we apply a new modality to a previously established, functionally stable, multi-well bioengineered microliver-fabricated from primary human hepatocytes and supportive stromal cells-in order to advance both small molecule and nucleic acid therapeutic pipelines. Specifically, we achieve robust and durable gene silencing in vitro to tune the human metabolism of small molecules, and demonstrate its capacity to query the potential efficacy and/or toxicity of candidate therapeutics. Additionally, we apply this engineered platform to test siRNAs designed to target hepatocytes and impact human liver genetic and infectious diseases.


Subject(s)
Drug Discovery/methods , Hepatocytes/metabolism , Liver/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Stromal Cells/metabolism , 3T3 Cells , Animals , Hepatocytes/cytology , Humans , Liver/cytology , Mice , Plasmodium falciparum , Stromal Cells/cytology
8.
Mol Ther ; 26(3): 708-717, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29456020

ABSTRACT

Significant progress has been made in the advancement of RNAi therapeutics by combining a synthetic triantennary N-acetylgalactosamine ligand targeting the asialoglycoprotein receptor with chemically modified small interfering RNA (siRNA) designs, including the recently described Enhanced Stabilization Chemistry. This strategy has demonstrated robust RNAi-mediated gene silencing in liver after subcutaneous administration across species, including human. Here we demonstrate that substantial efficacy improvements can be achieved through further refinement of siRNA chemistry, optimizing the positioning of 2'-deoxy-2'-fluoro and 2'-O-methyl ribosugar modifications across both strands of the double-stranded siRNA duplex to enhance stability without compromising intrinsic RNAi activity. To achieve this, we employed an iterative screening approach across multiple siRNAs to arrive at advanced designs with low 2'-deoxy-2'-fluoro content that yield significantly improved potency and duration in preclinical species, including non-human primate. Liver exposure data indicate that the improvement in potency is predominantly due to increased metabolic stability of the siRNA conjugates.


Subject(s)
Acetylgalactosamine , RNA Interference , RNA, Small Interfering , Acetylgalactosamine/chemistry , Animals , Argonaute Proteins/genetics , Gene Expression Regulation , Gene Silencing , Hepatocytes/metabolism , Liver/metabolism , Male , Mice , Mice, Transgenic , RNA, Messenger/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics
10.
Cell Metab ; 26(2): 394-406.e6, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28768177

ABSTRACT

Inhibiting lipogenesis prevents hepatic steatosis in rodents with insulin resistance. To determine if reducing lipogenesis functions similarly in humans, we developed MK-4074, a liver-specific inhibitor of acetyl-CoA carboxylase (ACC1) and (ACC2), enzymes that produce malonyl-CoA for fatty acid synthesis. MK-4074 administered to subjects with hepatic steatosis for 1 month lowered lipogenesis, increased ketones, and reduced liver triglycerides by 36%. Unexpectedly, MK-4074 increased plasma triglycerides by 200%. To further investigate, mice that lack ACC1 and ACC2 in hepatocytes (ACC dLKO) were generated. Deletion of ACCs decreased polyunsaturated fatty acid (PUFA) concentrations in liver due to reduced malonyl-CoA, which is required for elongation of essential fatty acids. PUFA deficiency induced SREBP-1c, which increased GPAT1 expression and VLDL secretion. PUFA supplementation or siRNA-mediated knockdown of GPAT1 normalized plasma triglycerides. Thus, inhibiting lipogenesis in humans reduced hepatic steatosis, but inhibiting ACC resulted in hypertriglyceridemia due to activation of SREBP-1c and increased VLDL secretion.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fatty Liver/blood , Fatty Liver/drug therapy , Triglycerides/blood , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Fatty Liver/genetics , Fatty Liver/pathology , Hepatocytes/enzymology , Hepatocytes/pathology , Humans , Lipoproteins, VLDL/genetics , Lipoproteins, VLDL/metabolism , Mice , Mice, Knockout , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/genetics
11.
PLoS One ; 12(7): e0182270, 2017.
Article in English | MEDLINE | ID: mdl-28759574

ABSTRACT

Cytoplasmic polyadenylation element binding (CPEB) proteins are evolutionary conserved RNA-binding proteins that control mRNA polyadenylation and translation. Orthologs in humans and other vertebrates are mainly involved in oogenesis. This is also the case for the C. elegans CPEB family member CPB-3, whereas two further CPEB proteins (CPB-1 and FOG-1) are involved in spermatogenesis. Here we describe the characterisation of a new missense allele of cpb-3 and show that loss of cpb-3 function leads to an increase in physiological germ cell death. To better understand the interaction and effect of C. elegans CPEB proteins on processes such as physiological apoptosis, germ cell differentiation, and regulation of gene expression, we characterised changes in the transcriptome and proteome of C. elegans CPEB mutants. Our results show that, despite their sequence similarities CPEB family members tend to have distinct overall effects on gene expression (both at the transcript and protein levels). This observation is consistent with the distinct phenotypes observed in the various CPEB family mutants.


Subject(s)
Apoptosis , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Germ Cells/metabolism , RNA-Binding Proteins/metabolism , Animals , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Male , Oogenesis , Phenotype , RNA-Binding Proteins/genetics , Spermatogenesis , Transcriptome
12.
Methods Mol Biol ; 1639: 115-126, 2017.
Article in English | MEDLINE | ID: mdl-28752451

ABSTRACT

RNAi is a powerful tool that can be used to probe gene function as well as for therapeutic intervention. We describe a workflow and methods to identify screen and select potent and specific siRNAs in vitro and in vivo using qPCR-based methods as well as an AAT activity assay. We apply these techniques to a set of siRNAs targeting rat AAT, and use this set to exemplify the cell-based and in vivo data that can be generated using these methods.


Subject(s)
Molecular Biology/methods , RNA Interference , RNA, Small Interfering/metabolism , alpha 1-Antitrypsin/genetics , Animals , Cell Line , DNA, Complementary/genetics , Female , Gene Knockdown Techniques , Humans , Mice , Rats , Reproducibility of Results , Transfection , alpha 1-Antitrypsin/metabolism
13.
Amyloid ; 23(2): 109-18, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27033334

ABSTRACT

ATTR amyloidosis is a systemic, debilitating and fatal disease caused by transthyretin (TTR) amyloid accumulation. RNA interference (RNAi) is a clinically validated technology that may be a promising approach to the treatment of ATTR amyloidosis. The vast majority of TTR, the soluble precursor of TTR amyloid, is expressed and synthesized in the liver. RNAi technology enables robust hepatic gene silencing, the goal of which would be to reduce systemic levels of TTR and mitigate many of the clinical manifestations of ATTR that arise from hepatic TTR expression. To test this hypothesis, TTR-targeting siRNAs were evaluated in a murine model of hereditary ATTR amyloidosis. RNAi-mediated silencing of hepatic TTR expression inhibited TTR deposition and facilitated regression of existing TTR deposits in pathologically relevant tissues. Further, the extent of deposit regression correlated with the level of RNAi-mediated knockdown. In comparison to the TTR stabilizer, tafamidis, RNAi-mediated TTR knockdown led to greater regression of TTR deposits across a broader range of affected tissues. Together, the data presented herein support the therapeutic hypothesis behind TTR lowering and highlight the potential of RNAi in the treatment of patients afflicted with ATTR amyloidosis.


Subject(s)
Amyloid Neuropathies, Familial/therapy , Liver/metabolism , Prealbumin/antagonists & inhibitors , RNA, Messenger/antagonists & inhibitors , RNA, Small Interfering/administration & dosage , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/metabolism , Amyloid Neuropathies, Familial/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzoxazoles/pharmacology , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Gene Expression , Humans , Liver/pathology , Macaca fascicularis , Male , Mice , Mice, Transgenic , Prealbumin/genetics , Prealbumin/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics
14.
Mol Ther Nucleic Acids ; 4: e263, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26528940

ABSTRACT

The acute hepatic porphyrias are caused by inherited enzymatic deficiencies in the heme biosynthesis pathway. Induction of the first enzyme 5-aminolevulinic acid synthase 1 (ALAS1) by triggers such as fasting or drug exposure can lead to accumulation of neurotoxic heme intermediates that cause disease symptoms. We have demonstrated that hepatic ALAS1 silencing using siRNA in a lipid nanoparticle effectively prevents and treats induced attacks in a mouse model of acute intermittent porphyria. Herein, we report the development of ALN-AS1, an investigational GalNAc-conjugated RNAi therapeutic targeting ALAS1. One challenge in advancing ALN-AS1 to patients is the inability to detect liver ALAS1 mRNA in the absence of liver biopsies. We here describe a less invasive circulating extracellular RNA detection assay to monitor RNAi drug activity in serum and urine. A striking correlation in ALAS1 mRNA was observed across liver, serum, and urine in both rodents and nonhuman primates (NHPs) following treatment with ALN-AS1. Moreover, in donor-matched human urine and serum, we demonstrate a notable correspondence in ALAS1 levels, minimal interday assay variability, low interpatient variability from serial sample collections, and the ability to distinguish between healthy volunteers and porphyria patients with induced ALAS1 levels. The collective data highlight the potential utility of this assay in the clinical development of ALN-AS1, and in broadening our understanding of acute hepatic porphyrias disease pathophysiology.

15.
Nat Med ; 21(5): 492-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25849132

ABSTRACT

Hemophilia A and B are inherited bleeding disorders characterized by deficiencies in procoagulant factor VIII (FVIII) or factor IX (FIX), respectively. There remains a substantial unmet medical need in hemophilia, especially in patients with inhibitory antibodies against replacement factor therapy, for novel and improved therapeutic agents that can be used prophylactically to provide effective hemostasis. Guided by reports suggesting that co-inheritance of prothrombotic mutations may ameliorate the clinical phenotype in hemophilia, we developed an RNA interference (RNAi) therapeutic (ALN-AT3) targeting antithrombin (AT) as a means to promote hemostasis in hemophilia. When administered subcutaneously, ALN-AT3 showed potent, dose-dependent, and durable reduction of AT levels in wild-type mice, mice with hemophilia A, and nonhuman primates (NHPs). In NHPs, a 50% reduction in AT levels was achieved with weekly dosing at approximately 0.125 mg/kg, and a near-complete reduction in AT levels was achieved with weekly dosing at 1.5 mg/kg. Treatment with ALN-AT3 promoted hemostasis in mouse models of hemophilia and led to improved thrombin generation in an NHP model of hemophilia A with anti-factor VIII inhibitors. This investigational compound is currently in phase 1 clinical testing in subjects with hemophilia A or B.


Subject(s)
Antithrombins/chemistry , Blood Coagulation/drug effects , Factor IX/chemistry , Factor VIII/chemistry , Hemophilia A/drug therapy , RNA Interference , Animals , Dose-Response Relationship, Drug , Female , Hemophilia A/genetics , Hemostasis/drug effects , Homozygote , Humans , Male , Mice , Mutation
16.
ACS Chem Biol ; 10(5): 1181-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25730476

ABSTRACT

Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.


Subject(s)
Acetylgalactosamine/metabolism , Gene Silencing , Hepatocytes/metabolism , Nucleosides/metabolism , RNA, Small Interfering/genetics , Animals , Mice , Mice, Inbred C57BL , RNA, Small Interfering/metabolism
17.
Chembiochem ; 16(6): 903-8, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25786782

ABSTRACT

We recently demonstrated that siRNAs conjugated to triantennary N-acetylgalactosamine (GalNAc) induce robust RNAi-mediated gene silencing in the liver, owing to uptake mediated by the asialoglycoprotein receptor (ASGPR). Novel monovalent GalNAc units, based on a non-nucleosidic linker, were developed to yield simplified trivalent GalNAc-conjugated oligonucleotides under solid-phase synthesis conditions. Synthesis of oligonucleotide conjugates using monovalent GalNAc building blocks required fewer synthetic steps compared to the previously optimized triantennary GalNAc construct. The redesigned trivalent GalNAc ligand maintained optimal valency, spatial orientation, and distance between the sugar moieties for proper recognition by ASGPR. siRNA conjugates were synthesized by sequential covalent attachment of the trivalent GalNAc to the 3'-end of the sense strand and resulted in a conjugate with in vitro and in vivo potency similar to that of the parent trivalent GalNAc conjugate design.


Subject(s)
Acetylgalactosamine/chemistry , Drug Carriers/chemistry , Gene Silencing , Hepatocytes/metabolism , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Animals , Mice , Prealbumin/deficiency , Prealbumin/genetics
18.
J Am Chem Soc ; 136(49): 16958-61, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25434769

ABSTRACT

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.


Subject(s)
Acetylgalactosamine/chemistry , Gene Silencing , Hepatocytes/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Animals , Mice , Mice, Inbred C57BL , Molecular Structure
19.
Methods Enzymol ; 533: 57-77, 2013.
Article in English | MEDLINE | ID: mdl-24182918

ABSTRACT

We describe a scalable method for measuring changes in gene expression following RNAi in mammalian cells. This protocol outlines methods to transfect cells, isolate total RNA, perform cDNA synthesis, run qPCR reactions with multiplexed TaqMan dual hydrolysis probes, and analyze the results from qPCR using relative quantification (Fleige et al., 2006). These methods can be used to assess the relative knockdown of a set of siRNAs against a target in order to identify the most effective molecule and they can be used to assess the potency of a siRNA or group of siRNAs when performed over a range of doses. When screening panels of siRNAs targeting a given gene, knockdown can be assessed in two phases. In the first phase, the most active molecules are identified in a single dose screen. In the second phase a dose response screen is used to identify the subset of efficacious molecules that are the most potent.


Subject(s)
RNA Interference , Real-Time Polymerase Chain Reaction/methods , Animals , DNA, Complementary , Gene Knockdown Techniques/methods , Mammals , RNA/isolation & purification , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Transfection/methods
20.
Cancer Immunol Immunother ; 62(2): 285-97, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22903385

ABSTRACT

Dendritic cell (DC)-based vaccination boosting antigen-specific immunity is being explored for the treatment of cancer and chronic viral infections. Although DC-based immunotherapy can induce immunological responses, its clinical benefit has been limited, indicating that further improvement of DC vaccine potency is essential. In this study, we explored the generation of a clinical-grade applicable DC vaccine with improved immunogenic potential by combining PD-1 ligand siRNA and target antigen mRNA delivery. We demonstrated that PD-L1 and PD-L2 siRNA delivery using DLin-KC2-DMA-containing lipid nanoparticles (LNP) mediated efficient and specific knockdown of PD-L expression on human monocyte-derived DC. The established siRNA-LNP transfection method did not affect DC phenotype or migratory capacity and resulted in acceptable DC viability. Furthermore, we showed that siRNA-LNP transfection can be successfully combined with both target antigen peptide loading and mRNA electroporation. Finally, we demonstrated that these PD-L-silenced DC loaded with antigen mRNA superiorly boost ex vivo antigen-specific CD8(+) T cell responses from transplanted cancer patients. Together, these findings indicate that our PD-L siRNA-LNP-modified DC are attractive cells for clinical-grade production and in vivo application to induce and boost immune responses not only in transplanted cancer patients, but likely also in other settings.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Dendritic Cells/immunology , Gene Silencing , Programmed Cell Death 1 Receptor/immunology , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes/immunology , Electroporation , Humans , Immunotherapy , Leukocytes, Mononuclear/immunology , Lipids/immunology , Lymphocyte Activation/immunology , Nanoparticles , Programmed Cell Death 1 Ligand 2 Protein/genetics , Programmed Cell Death 1 Ligand 2 Protein/immunology , Programmed Cell Death 1 Receptor/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...