Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 16(23): 4560-4568, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27801455

ABSTRACT

The diagnosis of infectious disease is typically carried out at the point-of-care (POC) using the lateral flow assay (LFA). While cost-effective and portable, LFAs often lack the clinical sensitivity and specificity required for accurate diagnoses. In response to this challenge, we introduce a new digital microfluidic (DMF) platform fabricated using a custom inkjet printing and roll-coating process that is scalable to mass production. The performance of the new devices is on par with that of traditional DMF devices fabricated in a cleanroom, with a materials cost for the new devices of only US $0.63 per device. To evaluate the usefulness of the new platform, we performed a 13-step rubella virus (RV) IgG immunoassay on the inkjet printed, roll-coated devices, which yielded a limit of detection of 0.02 IU mL-1, well below the diagnostic cut-off of 10 IU mL-1 for RV infection and immunity. We propose that this represents a breakthrough for DMF, lowering the costs to a level such that the new platforms will be an attractive alternative to LFAs for the diagnosis of infectious disease at the POC.


Subject(s)
Costs and Cost Analysis , Ink , Lab-On-A-Chip Devices/economics , Point-of-Care Systems , Printing , Enzyme-Linked Immunosorbent Assay , Equipment Design , Immunoglobulin G/analysis , Rubella virus/immunology , Rubella virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...