Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ALTEX ; 39(4): 656-666, 2022.
Article in English | MEDLINE | ID: mdl-35353900

ABSTRACT

Exposure-response assessment methods have shifted towards more quantitative approaches, with health risk assessors exploring more statistically driven techniques. These assessments, however, usually rely on one critical health effect from a single key study. Categorical regression addresses this limitation by incorporating data from all relevant studies ­ including human, animal, and mechanistic studies ­ thereby including a broad spectrum of health endpoints and exposure levels for exposure-response analysis in an objective manner. Categorical regression requires the establishment of ordered response categories corresponding to increasingly severe adverse health outcomes and the availability of a comprehensive database that summarizes all data on different outcomes from different studies, including the exposure or dose at which these out-comes are observed and their severity. It has found application in the risk assessment of essential nutrients and trace metals. Since adverse effects may arise from either deficient or excess exposure, the exposure-response curve is U-shaped, which provides a basis for determining optimal intake levels that minimize the joint risks of deficiency and excess. This article provides an overview of the use of categorical regression fit exposure-response models incorporating data from multiple evidence streams. An extension of categorical regression that permits the simultaneous analysis of excess and deficiency toxicity data is presented and applied to comprehensive databases on copper and manganese. Future applications of cat-egorical regression will be able to make greater use of diverse data sets developed using new approach methodologies, which can be expected to provide valuable information on toxic responses of varying severity.


Subject(s)
Copper , Nutrients , Animals , Humans , Copper/toxicity , Databases, Factual , Nutrients/deficiency , Risk Assessment
2.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 203-236, 2019.
Article in English | MEDLINE | ID: mdl-31795923

ABSTRACT

Since the inception of the IARC Monographs Programme in the early 1970s, this Programme has developed 119 Monograph Volumes on more than 1000 agents for which there exists some evidence of cancer risk to humans. Of these, 120 agents were found to meet the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs, compiled in 2008-2009 and published in 2012, provided a review and update of the 107 Group 1 agents identified as of 2009. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. The Group I agents reviewed in Volume 100, as well as five additional Group 1 agents defined in subsequent Volumes of the Monographs, were used to assess the degree of concordance between sites where tumors originate in humans and experimental animals including mice, rats, hamsters, dogs, and non-human primates using an anatomically based tumor nomenclature system, representing 39 tumor sites and 14 organ and tissue systems. This evaluation identified 91 Group 1 agents with sufficient evidence (82 agents) or limited evidence (9 agents) of carcinogenicity in animals. The most common tumors observed in both humans and animals were those of the respiratory system including larynx, lung, and lower respiratory tract. In humans, respiratory system tumors were noted for 31 of the 111 distinct Group 1 carcinogens identified up to and including Volume 109 of the IARC Monographs, comprising predominantly 14 chemical agents and related occupations in category VI; seven arsenic, metals, fibers, and dusts in category III, and five personal habits and indoor combustions in category V. Subsequent to respiratory system tumors, those in lymphoid and hematopoietic tissues (26 agents), the urothelium (18 agents), and the upper aerodigestive tract (16 agents) were most often seen in humans, while tumors in digestive organs (19 agents), skin (18 agents), and connective tissues (17 agents) were frequently seen in animals. Exposures to radiation, particularly X- and γ-radiation, and tobacco smoke were associated with tumors at multiple sites in humans. Although the IARC Monographs did not emphasize tumor site concordance between animals and humans, substantial concordance was detected for several organ and tissue systems, even under the stringent criteria for sufficient evidence of carcinogenicity used by IARC. Of the 60 agents for which at least one tumor site was identified in both humans and animals, 52 (87%) exhibited tumors in at least one of the same organ and tissue systems in humans and animals. It should be noted that some caution is needed in interpreting concordance at sites where sample size is particularly small. Although perfect (100%) concordance was noted for agents that induce tumors of the mesothelium, only two Group 1 agents that met the criteria for inclusion in the concordance analysis caused tumors at this site. Although the present analysis demonstrates good concordance between animals and humans for many, but not all, tumor sites, limitations of available data may result in underestimation of concordance.


Subject(s)
Carcinogenesis/chemically induced , Carcinogens/toxicity , Neoplasms/chemically induced , Animals , Animals, Laboratory , Humans , Neoplasms/pathology , Species Specificity
3.
J Toxicol Environ Health B Crit Rev ; 22(7-8): 244-263, 2019.
Article in English | MEDLINE | ID: mdl-31637961

ABSTRACT

Since the inception of the International Agency for Research on Cancer (IARC) in the early 1970s, the IARC Monographs Programme has evaluated more than 1000 agents with respect to carcinogenic hazard; of these, up to and including Volume 119 of the IARC Monographs, 120 agents met the criteria for classification as carcinogenic to humans (Group 1). Volume 100 of the IARC Monographs provided a review and update of Group 1 carcinogens. These agents were divided into six broad categories: (I) pharmaceuticals; (II) biological agents; (III) arsenic, metals, fibers, and dusts; (IV) radiation; (V) personal habits and indoor combustions; and (VI) chemical agents and related occupations. Data on biological mechanisms of action (MOA) were extracted from the Monographs to assemble a database on the basis of ten key characteristics attributed to human carcinogens. After some grouping of similar agents, the characteristic profiles were examined for 86 Group 1 agents for which mechanistic information was available in the IARC Monographs up to and including Volume 106, based upon data derived from human in vivo, human in vitro, animal in vivo, and animal in vitro studies. The most prevalent key characteristic was "is genotoxic", followed by "alters cell proliferation, cell death, or nutrient supply" and "induces oxidative stress". Most agents exhibited several of the ten key characteristics, with an average of four characteristics per agent, a finding consistent with the notion that cancer development in humans involves multiple pathways. Information on the key characteristics was often available from multiple sources, with many agents demonstrating concordance between human and animal sources, particularly with respect to genotoxicity. Although a detailed comparison of the characteristics of different types of agents was not attempted here, the overall characteristic profiles for pharmaceutical agents and for chemical agents and related occupations appeared similar. Further in-depth analyses of this rich database of characteristics of human carcinogens are expected to provide additional insights into the MOA of human cancer development.


Subject(s)
Carcinogens/toxicity , Mutagens/toxicity , Neoplasms/chemically induced , Animals , Carcinogenesis/chemically induced , Carcinogenicity Tests , Humans , International Agencies , Mutagenesis , Neoplasms/pathology
4.
Risk Anal ; 37(2): 265-279, 2017 02.
Article in English | MEDLINE | ID: mdl-27043736

ABSTRACT

Essential elements such as copper and manganese may demonstrate U-shaped exposure-response relationships due to toxic responses occurring as a result of both excess and deficiency. Previous work on a copper toxicity database employed CatReg, a software program for categorical regression developed by the U.S. Environmental Protection Agency, to model copper excess and deficiency exposure-response relationships separately. This analysis involved the use of a severity scoring system to place diverse toxic responses on a common severity scale, thereby allowing their inclusion in the same CatReg model. In this article, we present methods for simultaneously fitting excess and deficiency data in the form of a single U-shaped exposure-response curve, the minimum of which occurs at the exposure level that minimizes the probability of an adverse outcome due to either excess or deficiency (or both). We also present a closed-form expression for the point at which the exposure-response curves for excess and deficiency cross, corresponding to the exposure level at which the risk of an adverse outcome due to excess is equal to that for deficiency. The application of these methods is illustrated using the same copper toxicity database noted above. The use of these methods permits the analysis of all available exposure-response data from multiple studies expressing multiple endpoints due to both excess and deficiency. The exposure level corresponding to the minimum of this U-shaped curve, and the confidence limits around this exposure level, may be useful in establishing an acceptable range of exposures that minimize the overall risk associated with the agent of interest.


Subject(s)
Copper/toxicity , Dose-Response Relationship, Drug , Environmental Exposure , Risk Assessment/methods , Animals , Computer Simulation , Databases, Factual , Humans , Likelihood Functions , Mice , Rats , Regression Analysis , Species Specificity
5.
Neurotoxicology ; 58: 226-237, 2017 01.
Article in English | MEDLINE | ID: mdl-27989617

ABSTRACT

Mn is an essential element that causes neurotoxicity in humans when inhaled at high concentrations. This metal has well-recognized route-dependent differences in absorption, with greater proportionate uptake for inhalation versus dietary exposure. Physiologically-based pharmacokinetic (PBPK) models for Mn have included these route specific differences in uptake and their effect on delivery of Mn to target tissues via systemic circulation. These PBPK models include components describing ingestion and inhalation, homeostatic control (concentration dependent biliary elimination and gastrointestinal absorption), and delivery to target sites within the brain. The objective of this study was to combine PBPK modeling of target tissue Mn concentration and categorical regression analysis to identify Mn intake levels (both by food and air) that are expected to cause minimal toxicity. We first used the human PBPK model to describe blood Mn data from three occupational exposure studies, demonstrating consistency between model predictions and measured data. The PBPK model was then used to predict concentrations of Mn in the globus pallidus (the presumed target tissue for motor function disruption in humans) for various epidemiological studies. With the predicted globus pallidus concentration of Mn, we conducted categorical regression modeling between globus pallidus Mn and severity-scored neurological outcome data from the human cohorts. This structured tissue dose - response analysis led to an estimated 10% extra risk concentration (ERC10) of 0.55µg/g Mn in the globus pallidus, which is comparable to similar values estimated by the Agency of Toxic Substances and Disease Registry and Health Canada (after translation from external exposure to tissue dose). The steep dose-response curve below this ERC10 value may be used to inform the choice of adjustment factor to translate the ERC10 as a point of departure to a reference concentration for occupational or environmental exposure to Mn. Because these results are based on human epidemiological data and a human PBPK model, adjustment or translation of results from animals to humans is not required.


Subject(s)
Brain/metabolism , Manganese Poisoning/pathology , Manganese , Occupational Exposure , Dose-Response Relationship, Drug , Humans , Manganese/metabolism , Manganese/pharmacokinetics , Manganese/toxicity , Models, Biological , Regression Analysis
6.
Neurotoxicology ; 58: 203-216, 2017 01.
Article in English | MEDLINE | ID: mdl-27637608

ABSTRACT

Characterizing the U-shaped exposure response relationship for manganese (Mn) is necessary for estimating the risk of adverse health from Mn toxicity due to excess or deficiency. Categorical regression has emerged as a powerful tool for exposure-response analysis because of its ability to synthesize relevant information across multiple studies and species into a single integrated analysis of all relevant data. This paper documents the development of a database on Mn toxicity designed to support the application of categorical regression techniques. Specifically, we describe (i) the conduct of a systematic search of the literature on Mn toxicity to gather data appropriate for dose-response assessment; (ii) the establishment of inclusion/exclusion criteria for data to be included in the categorical regression modeling database; (iii) the development of a categorical severity scoring matrix for Mn health effects to permit the inclusion of diverse health outcomes in a single categorical regression analysis using the severity score as the outcome variable; and (iv) the convening of an international expert panel to both review the severity scoring matrix and assign severity scores to health outcomes observed in studies (including case reports, epidemiological investigations, and in vivo experimental studies) selected for inclusion in the categorical regression database. Exposure information including route, concentration, duration, health endpoint(s), and characteristics of the exposed population was abstracted from included studies and stored in a computerized manganese database (MnDB), providing a comprehensive repository of exposure-response information with the ability to support categorical regression modeling of oral exposure data.


Subject(s)
Manganese Poisoning/etiology , Manganese/toxicity , Regression Analysis , Animals , Copper/toxicity , Databases, Factual , Dose-Response Relationship, Drug , Environmental Exposure , Female , Humans , Male
7.
Neurotoxicology ; 58: 217-225, 2017 01.
Article in English | MEDLINE | ID: mdl-27720796

ABSTRACT

INTRODUCTION: Manganese is an essential nutrient which can cause adverse effects if ingested to excess or in insufficient amounts, leading to a U-shaped exposure-response relationship. Methods have recently been developed to describe such relationships by simultaneously modeling the exposure-response curves for excess and deficiency. These methods incorporate information from studies with diverse adverse health outcomes within the same analysis by assigning severity scores to achieve a common response metric for exposure-response modeling. OBJECTIVE: We aimed to provide an estimate of the optimal dietary intake of manganese to balance adverse effects from deficient or excess intake. METHODS: We undertook a systematic review of the literature from 1930 to 2013 and extracted information on adverse effects from manganese deficiency and excess to create a database on manganese toxicity following oral exposure. Although data were available for seven different species, only the data from rats was sufficiently comprehensive to support analytical modelling. The toxicological outcomes were standardized on an 18-point severity scale, allowing for a common analysis of all available toxicological data. Logistic regression modelling was used to simultaneously estimate the exposure-response profile for dietary deficiency and excess for manganese and generate a U-shaped exposure-response curve for all outcomes. RESULTS: Data were available on the adverse effects of 6113 rats. The nadir of the U-shaped joint response curve occurred at a manganese intake of 2.70mg/kgbw/day with a 95% confidence interval of 2.51-3.02. The extremes of both deficient and excess intake were associated with a 90% probability of some measurable adverse event. CONCLUSION: The manganese database supports estimation of optimal intake based on combining information on adverse effects from systematic review of published experiments. There is a need for more studies on humans. Translation of our results from rats to humans will require adjustment for interspecies differences in sensitivity to manganese.


Subject(s)
Logistic Models , Manganese Poisoning , Manganese/toxicity , Animals , Databases, Bibliographic/statistics & numerical data , Disease Models, Animal , Dose-Response Relationship, Drug , Manganese Poisoning/etiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...