Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Phytochem Anal ; 34(7): 869-883, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37403427

ABSTRACT

INTRODUCTION: This study describes the molecular profile and the potential antiviral activity of extracts from Phyllanthus brasiliensis, a plant widely found in the Brazilian Amazon. The research aims to shed light on the potential use of this species as a natural antiviral agent. METHODS: The extracts were analysed using liquid chromatography-mass spectrometry (LC-MS) system, a potent analytical technique to discover drug candidates. In the meantime, in vitro antiviral assays were performed against Mayaro, Oropouche, Chikungunya, and Zika viruses. In addition, the antiviral activity of annotated compounds was predicted by in silico methods. RESULTS: Overall, 44 compounds were annotated in this study. The results revealed that P. brasiliensis has a high content of fatty acids, flavones, flavan-3-ols, and lignans. Furthermore, in vitro assays revealed potent antiviral activity against different arboviruses, especially lignan-rich extracts against Zika virus (ZIKV), as follows: methanolic extract from bark (MEB) [effective concentration for 50% of the cells (EC50 ) = 0.80 µg/mL, selectivity index (SI) = 377.59], methanolic extract from the leaf (MEL) (EC50 = 0.84 µg/mL, SI = 297.62), and hydroalcoholic extract from the leaf (HEL) (EC50 = 1.36 µg/mL, SI = 735.29). These results were supported by interesting in silico prediction, where tuberculatin (a lignan) showed a high antiviral activity score. CONCLUSIONS: Phyllanthus brasiliensis extracts contain metabolites that could be a new kick-off point for the discovery of candidates for antiviral drug development, with lignans becoming a promising trend for further virology research.


Subject(s)
Lignans , Phyllanthus , Zika Virus Infection , Zika Virus , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phyllanthus/chemistry , Antiviral Agents/pharmacology , Lignans/pharmacology , Lignans/chemistry
2.
Metabolites ; 12(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36355166

ABSTRACT

Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called "raiz do sol" (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, and bacteria. Thus, in this study, the extract, and its fractions from D. nitidula roots were used to perform in vitro cytotoxic and antibacterial assays against Staphylococcus aureus strains. Thereafter, liquid chromatography-mass spectrometry (LC-MS) was used for the metabolite annotation process. The ethanolic extract of D. nitidula roots show significant bactericidal activity against S. aureus with IC50 82 µg.mL-1 and a selectivity index (SI) of 21.35. Furthermore, the SREFr2 and SREFr3 fractions show a potent bactericidal activity, i.e., MIC of 46.8 µg.mL-1 for both, and MBC of 375 and 93.7 µg.mL-1, respectively. As showcased, SREFr3 shows safe and effective antibacterial activity mainly in respect to the excellent selectivity index (SI = 82.06). On the other hand, SREFr2 shows low selectivity (SI = 6.8), which characterizes it as not safe for therapeutic use. Otherwise, due to a limited amount of reference MS2 spectra in public libraries, up to now, it was not possible to perform a complete metabolite annotation. Despite that, our antibacterial results for SREFr3 and correlated substructures of amino acid derivatives show that the roots of D. nitidula are a natural source of specialized metabolites, which can be isolated in the future, and then used as a support for further bio-guided research, as well as natural drug development.

3.
Cell Rep ; 40(3): 111124, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858578

ABSTRACT

Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy.


Subject(s)
Optic Atrophy, Hereditary, Leber , DNA, Mitochondrial/genetics , Homeostasis , Humans , Mitochondria/genetics , Mitophagy/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology
4.
Life Sci ; 285: 119949, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34543640

ABSTRACT

AIMS: Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS: Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS: Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 µg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE: L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Colorectal Neoplasms/pathology , DNA Damage , Limonins/pharmacology , Meliaceae/chemistry , Animals , Colorectal Neoplasms/metabolism , Erythrocytes/drug effects , Female , G2 Phase Cell Cycle Checkpoints/drug effects , HCT116 Cells , Hemolysis , Humans , Limonins/isolation & purification , Limonins/therapeutic use , Mice , Plant Extracts/chemistry , Plant Extracts/pharmacology
5.
J Med Microbiol ; 67(8): 1191-1201, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30067169

ABSTRACT

A prevailing opinion is that the strains of Pseudomonas aeruginosa that infects both plants and humans are two separate species. This study strongly disputes that notion until the modern molecular technology proves otherwise. This paper examines a spectrum of strains occurring in nature, their habitats, dissemination, their relationship to clinical strains, and the environmental conditions that favor their colonization of plants. The isolates were obtained from clinical specimens, plants, soil, and water. The identity of these strains was confirmed using pyocin typing and biochemical assays. The data reveal that agricultural soils, potted ornamental plants, hoses, fountains, and faucets frequently harbored P. aeruginosa. However, it was not commonly found in semi-arid areas, suggesting that moisture and high humidity is necessary for colonization and survival. Though found in soil, P. aeruginosa was seldom isolated on edible plant parts. The pathogenicity of various strains on plants was tested by inoculating vegetables, lettuce slices (Lactuca sativa L. "Great Lakes"), celery stalks (Apium graveolens L. var. Dulce], potato tuber slices (Solanum tuberosum L. "Whiterose"), tomato (Lycopersicon esculentum L. Mill), cucumber (Cucumis sativus L.), rutabaga (Brassica campestris L.), and carrot (Daucus carota L. var sativa). There was considerable variation in the strains' ability to cause rot, but no difference was observed between clinical isolates and others from agricultural fields, water, and soil. Two of the clinical isolates from burn patients, P. aeruginosa PA13 and PA14, exhibited the greatest virulence in causing rot in all the plants that were tested, especially on cucumber, lettuce, potato, and tomato. The study discusses how closely the epidemiology of P. aeruginosa relates to many plant pathogens, and the ability of human isolates to colonize plants and food material under favorable conditions. The biochemical and phenotypic similarity among strains from the clinical and agricultural material is strongly indicative that they are the same species and that plants and soil are natural reservoirs for P. aeruginosa.


Subject(s)
Crops, Agricultural/microbiology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/pathogenicity , Soil Microbiology , Apium/microbiology , Brassica napus/microbiology , Cucumis sativus/microbiology , Daucus carota/microbiology , Food Contamination/analysis , Food Microbiology , Lactuca/microbiology , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Vegetables/microbiology , Water Microbiology
6.
Ecology ; 99(5): 1129-1138, 2018 05.
Article in English | MEDLINE | ID: mdl-29460277

ABSTRACT

We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with fertilization, as it does in our experiment. The statistical power and especially the duration of fertilization experiments conducted in old growth, tropical forests might be insufficient to detect the slow, modest growth responses that are to be expected.


Subject(s)
Forests , Tropical Climate , Nitrogen , Panama , Phosphorus , Soil , Trees
7.
Germs ; 7(2): 61-72, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28626736

ABSTRACT

INTRODUCTION: Febrile neutropenia is one of the most serious treatment-related complications in cancer patients. Susceptible to rapidly progressing infections, which result in prolonged hospitalization and use of broad-spectrum antibiotics, neutropenic patients are subject to colonization by multiresistant agents, which enhances the risk of infections. METHODS: In this study we included samples collected with nasal, oropharyngeal and anal swabs from hospitalized children with febrile neutropenia following chemotherapy, between March 2014 and 2015, aiming to elucidate colonization by S. aureus and Enterococcus spp., as well as their resistance profile. RESULTS: S. aureus was found in 22% of the patients and 14% of the events. Methicillin-resistant S. aureus colonized 13.6% of patients. Including anal swabs in the screening increased the identification of colonized patients by 20%. Enterococcus spp. was found in 27% of patients and 17% of episodes. Enterococcal isolates resistant to vancomycin, accounting for 25% of the total, were not isolated in anal swabs at any time, with the oropharyngeal site being much more important. The rate of infection by Enterococcus spp. was 4.5% of all patients and 16% among the colonized patients. CONCLUSION: Especially in this population, colonization studies including more sites can yield a higher chance of positive results. Establishing the colonization profile in febrile neutropenic children following chemotherapy may help to institute an empirical antibiotic treatment aimed at antibiotic adequacy and lower induction of resistance, thereby decreasing the risk of an unfavorable clinical outcome.

8.
Funct Plant Biol ; 43(5): 468-478, 2016 May.
Article in English | MEDLINE | ID: mdl-32480477

ABSTRACT

Tropical forests play a critical role in the global carbon cycle, but our limited understanding of the physiological sensitivity of tropical forest trees to environmental factors complicates predictions of tropical carbon fluxes in a changing climate. We determined the short-term temperature response of leaf photosynthesis and respiration of seedlings of three tropical tree species from Panama. For one of the species net CO2 exchange was also measured in situ. Dark respiration of all species increased linearly - not exponentially - over a ~30°C temperature range. The early-successional species Ficus insipida Willd. and Ochroma pyramidale (Cav. ex Lam.) Urb. had higher temperature optima for photosynthesis (Topt) and higher photosynthesis rates at Topt than the late-successional species Calophyllum longifolium Willd. The decrease in photosynthesis above Topt could be assigned, in part, to observed temperature-stimulated photorespiration and decreasing stomatal conductance (gS), with unmeasured processes such as respiration in the light, Rubisco deactivation, and changing membrane properties probably playing important additional roles, particularly at very high temperatures. As temperature increased above Topt, gS of laboratory-measured leaves first decreased, followed by an increase at temperatures >40-45°C. In contrast, gS of canopy leaves of F. insipida in the field continued to decrease with increasing temperature, causing complete suppression of photosynthesis at ~45°C, whereas photosynthesis in the laboratory did not reach zero until leaf temperature was ~50°C. Models parameterised with laboratory-derived data should be validated against field observations when they are used to predict tropical forest carbon fluxes.

9.
BMC Complement Altern Med ; 15: 249, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26205771

ABSTRACT

BACKGROUND: Leishmaniasis is an infectious disease caused by various species of the protozoan parasites of the Leishmania genus and transmitted by phlebotomine sandflies. The protozoa multiply in phagocytic cells, mainly macrophages, which play an important role defending the organism from pathogens. The most effective treatment for leishmaniasis is the chemotherapy and besides the high cost, these drugs are toxic and require a long period of treatment. Currently, some herbal products are considered an important alternative source of a new leishmanicidal agent, which includes the plant Physalis angulata, . We evaluated effects of an aqueous extract from roots of Physalis angulata (AEPa) on Leishmania proliferation, morphology and also determined whether physalins were present in the extract contributing to the knowledge of its pharmacological efficacy. METHODS: Morphological alterations were determined by light microscopy, transmission and scanning electron microscopy. Host cell viability was evaluated by MTT, and propidium iodide. AEPa were submitted in full HRESITOF analysis. RESULTS: AEPa promoted a dose-dependent reduction on promastigotes (IC50 = 39.5 µg/mL ± 5.1) and amastigotes (IC50 = 43.4 µg/mL ± 10.1) growth. This growth inhibition was associated with several morphological alterations observed in promastigote forms. No cytotoxic effect in mammalian cells was detected (IC50 > 4000 µg/mL). Furthemore, the presence of physalins A, B, D, E, F, G and H were described, for the first time, in the P. angulata root. CONCLUSIONS: Results demonstrate that AEPa effectively promotes antileishmanial activity with several important morphological alterations and has no cytotoxic effects on host cells.


Subject(s)
Antiprotozoal Agents/administration & dosage , Leishmania/drug effects , Leishmaniasis/drug therapy , Physalis/chemistry , Plant Extracts/administration & dosage , Animals , Cell Survival/drug effects , Female , Humans , Leishmania/physiology , Leishmaniasis/immunology , Leishmaniasis/parasitology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred BALB C , Plant Roots/chemistry
10.
Dalton Trans ; 44(39): 16982-7006, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26212049

ABSTRACT

This Perspective article highlights some of the traditional and non-traditional analytical tools that are presently used to characterize aqueous inorganic nanoscale clusters and polyoxometalate ions. The techniques discussed in this article include nuclear magnetic resonance spectroscopy (NMR), small angle X-ray scattering (SAXS), dynamic and phase analysis light scattering (DLS and PALS), Raman spectroscopy, and quantum mechanical computations (QMC). For each method we briefly describe how it functions and illustrate how these techniques are used to study cluster species in the solid state and in solution through several representative case studies. In addition to highlighting the utility of these techniques, we also discuss limitations of each approach and measures that can be applied to circumvent such limits as it pertains to aqueous inorganic cluster characterization.

11.
Exp Eye Res ; 134: 39-46, 2015 May.
Article in English | MEDLINE | ID: mdl-25795052

ABSTRACT

Corneal avascularization is essential for normal vision. Several antiangiogenic factors were identified in cornea such as endostatin and angiostatin. Cathepsin V, which is highly expressed in the cornea, can hydrolyze human plasminogen to release angiostatin fragments. Herein, we describe a detailed investigation of the expression profile of cathepsins B, L, S and V in the human cornea and the role of cysteine peptidases in modulating angiogenesis both in vitro and in vivo. We used various methodological tools for this purpose, including real-time PCR, SDS-PAGE, western blotting, catalytic activity assays, cellular assays and induction of corneal neovascularity in rabbit eyes. Human corneal enzymatic activity assays revealed the presence of cysteine proteases that were capable of processing endogenous corneal plasminogen to produce angiostatin-like fragments. Comparative real-time analysis of cathepsin B, L, S and V expression revealed that cathepsin V was the most highly expressed, followed by cathepsins L, B and S. However, cathepsin V depletion revealed that this enzyme is not the major cysteine protease responsible for plasminogen degradation under non-pathological conditions. Furthermore, western blotting analysis indicated that only cathepsins B and S were present in their enzymatically active forms. In vivo analysis of angiogenesis demonstrated that treatment with the cysteine peptidase inhibitor E64 caused a reduction in neovascularization. Taken together, our results show that human corneal cysteine proteases are critically involved in angiogenesis.


Subject(s)
Cathepsins/metabolism , Corneal Neovascularization/enzymology , Disease Models, Animal , Animals , Blotting, Western , Cathepsins/genetics , Corneal Neovascularization/pathology , Electrophoresis, Polyacrylamide Gel , Gene Expression Regulation/physiology , Humans , Plasminogen/metabolism , RNA, Messenger/genetics , Rabbits , Real-Time Polymerase Chain Reaction , Tissue Donors
12.
Front Microbiol ; 5: 479, 2014.
Article in English | MEDLINE | ID: mdl-25309519

ABSTRACT

It is increasingly recognized that macro-organisms (corals, insects, plants, vertebrates) consist of both host tissues and multiple microbial symbionts that play essential roles in their host's ecological and evolutionary success. Consequently, identifying benefits and costs of symbioses, as well as mechanisms underlying them are research priorities. All plants surveyed under natural conditions harbor foliar endophytic fungi (FEF) in their leaf tissues, often at high densities. Despite producing no visible effects on their hosts, experiments have nonetheless shown that FEF reduce pathogen and herbivore damage. Here, combining results from three genomic, and two physiological experiments, we demonstrate pervasive genetic and phenotypic effects of the apparently asymptomatic endophytes on their hosts. Specifically, inoculation of endophyte-free (E-) Theobroma cacao leaves with Colletotrichum tropicale (E+), the dominant FEF species in healthy T. cacao, induces consistent changes in the expression of hundreds of host genes, including many with known defensive functions. Further, E+ plants exhibited increased lignin and cellulose content, reduced maximum rates of photosynthesis (Amax), and enrichment of nitrogen-15 and carbon-13 isotopes. These phenotypic changes observed in E+ plants correspond to changes in expression of specific functional genes in related pathways. Moreover, a cacao gene (Tc00g04254) highly up-regulated by C. tropicale also confers resistance to pathogen damage in the absence of endophytes or their products in host tissues. Thus, the benefits of increased pathogen resistance in E+ plants are derived in part from up-regulation of intrinsic host defense responses, and appear to be offset by potential costs including reduced photosynthesis, altered host nitrogen metabolism, and endophyte heterotrophy of host tissues. Similar effects are likely in most plant-endophyte interactions, and should be recognized in the design and interpretation of genetic and phenotypic studies of plants.

13.
Inorg Chem ; 53(14): 7101-5, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24742048

ABSTRACT

[AlxIny(µ3-OH)6(µ-OH)18(H2O)24](NO3)15 hydroxy-aquo clusters (AlxIn13-x) are synthesized through the evaporation of stoichiometrically varied solutions of Al13 and In(NO3)3 using a transmetalation reaction. Several spectroscopic techniques ((1)H NMR, (1)H-diffusion ordered spectroscopy, dynamic light scattering, and Raman) are used to compare AlxIn13-x to its Al13 counterpart. A thin film of aluminum indium oxide was prepared from an Al7In6 cluster ink, showing its utility as a precursor for materials.

14.
Retina ; 34(6): 1103-11, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24480841

ABSTRACT

PURPOSE: To present the development and initial experience of a novel colored perfluorocarbon liquid (PFCL) in vitreoretinal surgery. METHODS: This was an experimental laboratory study and prospective human interventional study. F6H8 (Fluoron GmbH) was colored by adding 0.3 g/L blue anthraquinone dye. Subsequently, 20% colored F6H8 was prepared by mixing with perfluorooctane or perfluorodecalin (Fluoron GmbH). The novel product is not yet FDA approved for human application. In the laboratory, the colored PFCL was covered with 1) uncolored PFCL, 2) BSS, and 3) silicone oil. Cell toxicity was evaluated in L929 mouse fibroblasts using a growth inhibition assay. Porcine ex vivo eyes were evaluated after vitrectomy followed by intravitreal and subretinal colored PFCL infusion. A pilot, prospective, noncomparative interventional study was conducted in patients with retinal detachment with proliferative vitreoretinopathy (PVR). RESULTS: The density of the colored PFLC mixture was 1.664 g/cm for perfluorooctane and 1.802 g/cm for perfluorodecalin. There was no relevant cell growth inhibition with any concentration of colored PFCL tested. Experiments in pigs revealed that infusion of the colored PFCL caused neither staining of the internal limiting membrane nor intravitreal residual droplets. In the prospective study, 9 eyes (75%) underwent surgery for rhegmatogenous retinal detachment with at least grade C PVR. The colored PFCL enabled retinal break examination and detection of residual intravitreal droplets in all surgeries. There was no case of separation or leakage of the dye from the PFCL solution that could have caused unwanted staining of the vitreous or epiretinal surface. CONCLUSION: The colored PFCL enabled intraoperative maneuvers such as endolaser use. In addition, removal of the colored PFCL was easily achieved at the end of surgery.


Subject(s)
Coloring Agents/therapeutic use , Fluorocarbons/therapeutic use , Retinal Detachment/surgery , Vitreoretinal Surgery/methods , Vitreoretinopathy, Proliferative/surgery , Adult , Aged , Animals , Anthraquinones/chemistry , Anthraquinones/toxicity , Cell Proliferation/drug effects , Coloring Agents/toxicity , Disease Models, Animal , Endotamponade/methods , Female , Fibroblasts/drug effects , Fluorocarbons/toxicity , Humans , Male , Mice , Middle Aged , Pilot Projects , Prospective Studies , Swine
15.
An Acad Bras Cienc ; 85(3): 881-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24068080

ABSTRACT

In some previous studies, we described the isolation of nine compounds from leaves of Derris urucu, a species found widely in the Amazon rainforest, identified as five stilbenes and four dihydroflavonols. In this work, three of these dihydroflavonols [urucuol A (1), urucuol B (2) and isotirumalin (3)] were evaluated to identify their potential as allelochemicals, and we are also reporting the isolation and structural determination of a new flavonoid [5,3'-dihydroxy-4'-methoxy-(7,6:5″,6″)-2″,2″-dimethylpyranoflavanone (4)]. We investigated the effects of the dihydroflavonols 1-3 on seed germination and radicle and hypocotyl growth of the weed Mimosa pudica, using solutions at 150 mg.L-1. Urucuol B, alone, was the substance with the greatest potential to inhibit seed germination (26%), while isotirumalin showed greater ability to reduce the development of the hypocotyl (25%), but none of the three substances showed the potential to inhibit radicle. When combined in pairs, the substances showed synergism for the development of root and hypocotyl and effects on seed germination that could be attributed to antagonism. When tested separately, the trend has become more intense effects on seed germination, while for the substances tested in pairs, the intensity of the effect was greater on development of weed.


Subject(s)
Derris/chemistry , Flavonoids/pharmacology , Germination/drug effects , Mimosa/drug effects , Plant Leaves/chemistry , Stilbenes/pharmacology , Flavonoids/isolation & purification , Mimosa/growth & development , Stilbenes/isolation & purification
16.
Mitochondrion ; 13(6): 841-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23748048

ABSTRACT

Mitochondrial dysfunction in Wolfram Syndrome (WS) is controversial and optic neuropathy, a cardinal clinical manifestation, is poorly characterized. We here describe the histopathological features in postmortem retinas and optic nerves (ONs) from one patient with WS, testing the hypothesis that mitochondrial dysfunction underlies the pathology. Eyes and retrobulbar ONs were obtained at autopsy from a WS patient, and compared with those of a Leber hereditary optic neuropathy (LHON) patient and one healthy control. Retinas were stained with hematoxylin & eosin for general morphology and ONs were immunostained for myelin basic protein (MBP). Immunostained ONs were examined in four "quadrants": superior, inferior, nasal, and temporal. The WS retinas displayed a severe loss of retinal ganglion cells in the macular region similar to the LHON retina, but not in the control. The WS ONs, immunostained for MBP, revealed a zone of degeneration in the temporal and inferior quadrants. This pattern was similar to that seen in the LHON ONs but not in the control. Thus, the WS patient displayed a distinct pattern of optic atrophy observed bilaterally in the temporal and inferior quadrants of the ONs. This arrangement of axonal degeneration, involving primarily the papillomacular bundle, closely resembled LHON and other mitochondrial optic neuropathies, supporting that mitochondrial dysfunction underlies its pathogenesis.


Subject(s)
Axons , Optic Nerve/pathology , Wolfram Syndrome/pathology , Adult , Humans , Male , Membrane Proteins/genetics , Mutation
17.
Inorg Chem ; 52(10): 6187-92, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23659609

ABSTRACT

Raman spectroscopy, infrared spectroscopy, and quantum mechanical computations were used to characterize and assign observed spectral features, highlight structural characteristics, and investigate the bonding environments of [M13(µ3-OH)6(µ2-OH)18(H2O)24](NO3)15 (M = Al or Ga) nanoscale clusters in the solid phase and aqueous solution. Solid-phase Raman spectroscopy was used to reveal that the metal-oxygen (M-O) symmetric stretch (breathing mode) for the Al13 cluster is observed at 478 cm(-1), whereas this same mode is seen at 464 cm(-1) in the Ga13 cluster. The hydroxide bridges in each cluster are weakly Raman active but show slightly stronger infrared activity. The breathing modes associated with the clusters in the solid state are not clearly visible in aqueous solution. This change in behavior in the solution phase may indicate a symmetry breaking of the cluster or exchange events between protons on the ligands and the protic solvent. Overall, each cluster has several unique vibrational modes in the low wavenumber region (<1500 cm(-1)) that are distinct from the parent nitrate salt and other polymeric species with similar structure, which allows for unambiguous identification of the cluster in solution and solid phases.

18.
Am J Ophthalmol ; 155(4): 705-12, 712.e1, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23253911

ABSTRACT

PURPOSE: To investigate the in vitro effect of pH, osmolarity, solvent, and light interaction on currently used and novel dyes to minimize dye-related retinal toxicity. DESIGN: Laboratory investigation. METHODS: Retinal pigment epithelium (RPE) human cells (ARPE-19) were exposed for 10 minutes to different pH solutions (4, 5, 6, 7, 7.5, 8, and 9) and glucose solutions (2.5%, 5.0%, 10%, 20%, 40%, and 50%) with osmolarity from 142 to 2530 mOsm, with and without 0.5 mg/mL trypan blue. R28 cells were also incubated with glucose (150, 310, and 1000 mOsm) and mannitol used as an osmotic control agent in both experiments. Dye-light interaction was assessed by incubating ARPE-19 for 10 minutes with trypan blue, brilliant blue, bromophenol blue, fast green, light green, or indigo carmine (0.05 mg/mL diluted in balanced saline solution) in the presence of high-brightness xenon and mercury vapor light sources. RESULTS: Solutions with nonphysiologic pH, below 7 and above 7.5, proved to be remarkably toxic to RPE cells with or without trypan blue. Also, all glucose solutions were deleterious to RPE (P < .001) even in iso-osmolar range. No harmful effect was found with mannitol solutions. Among the dyes tested, only light green and fast green were toxic to ARPE-19 (P < .001). Light exposure did not increase RPE toxicity either with xenon light or mercury vapor lamp. CONCLUSIONS: Solutions containing glucose as a dye solvent or nonphysiologic pH should be used with care in surgical situations where the RPE is exposed. Light exposure under present assay conditions did not increase the RPE toxicity.


Subject(s)
Coloring Agents/toxicity , Retinal Pigment Epithelium/drug effects , Acetates/pharmacology , Cell Survival , Cells, Cultured , Drug Combinations , Glucose Solution, Hypertonic , Humans , Hydrogen-Ion Concentration , Light/adverse effects , Minerals/pharmacology , Osmolar Concentration , Prospective Studies , Retinal Neurons/drug effects , Retinal Neurons/pathology , Retinal Neurons/radiation effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/radiation effects , Sodium Chloride/pharmacology , Trypan Blue
19.
Invest Ophthalmol Vis Sci ; 53(12): 7608-17, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23060142

ABSTRACT

PURPOSE: Leber's hereditary optic neuropathy (LHON), a mitochondrial disease, has clinical manifestations that reflect the initial preferential involvement of the papillomacular bundle (PMB). The present study seeks to predict the order of axonal loss in LHON optic nerves using the Nerve Fiber Layer Stress Index (NFL-S(I)), which is a novel mathematical model. METHODS: Optic nerves were obtained postmortem from four molecularly characterized LHON patients with varying degrees of neurodegenerative changes and three age-matched controls. Tissues were cut in cross-section and stained with p-phenylenediamine to visualize myelin. Light microscopic images were captured in 32 regions of each optic nerve. Control and LHON tissues were evaluated by measuring axonal dimensions to generate an axonal diameter distribution map. LHON tissues were further evaluated by determining regions of total axonal depletion. RESULTS: A size gradient was evident in the control optic nerves, with average axonal diameter increasing progressively from the temporal to nasal borders. LHON optic nerves showed an orderly loss of axons, starting inferotemporally, progressing centrally, and sparing the superonasal region until the end. Values generated from the NFL-S(I) equation fit a linear regression curve (R(2) = 0.97; P < 0.001). CONCLUSIONS: The quantitative histopathologic data from this study revealed that the PMB is most susceptible in LHON, supporting clinical findings seen early in the course of disease onset. The present study also showed that the subsequent progression of axonal loss within the optic nerve can be predicted precisely with the NFL-S(I) equation. The results presented provided further insight into the pathophysiology of LHON.


Subject(s)
Axons/pathology , Models, Theoretical , Optic Atrophy, Hereditary, Leber/pathology , Optic Nerve/pathology , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence , Aged , Disease Progression , Female , Humans , Male , Mathematics , Middle Aged
20.
Retina ; 32(3): 606-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22080907

ABSTRACT

PURPOSE: To evaluate the retinal penetration and toxicity of two doses of intravitreal infliximab in primates. METHODS: Ten marmosets (Callithrix jacchus) were given intravitreal injection of 100 µg or 400 µg of infliximab, and balanced salt solution served as control. At baseline and after 24 hours (5 animals) and 7 days (the other 5), the eyes were examined by electroretinography. They were then killed (at 24 hours and 7 days) and assessed by light microscopy and transmission electron microscopy for toxicity and immunohistochemistry, using a biotinylated anti-human immunoglobulin G, to evaluate retinal penetration. RESULTS: There was no difference over 50% of the electroretinography b-wave between baseline and the time points studied in all animals. Light and electron microscopy, and electroretinography analysis, showed no signs of toxicity in any of the animals. Strong presence of infliximab was observed in all retinal layers 7 days after intravitreal injection at both doses (100 and 400 µg). CONCLUSION: Infliximab at doses of 100 and 400 µg seemed to cause no damage to the retina 24 hours and 7 days after its intravitreal injection, and deeply penetrated all its layers, in primates. These results encourage future perspectives for the treatment of chronic inflammatory diseases of the retina in humans.


Subject(s)
Anti-Inflammatory Agents/toxicity , Antibodies, Monoclonal/toxicity , Retina/drug effects , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Callithrix , Disease Models, Animal , Electroretinography/drug effects , Immunohistochemistry , Infliximab , Intravitreal Injections , Microscopy/methods , Retina/metabolism , Retina/pathology , Retinal Diseases/chemically induced , Retinal Diseases/metabolism , Retinal Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL