Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Sci ; 3: e10, 2014.
Article in English | MEDLINE | ID: mdl-25191602

ABSTRACT

The purpose of the present study was to compare digestibility of grass hay, faecal and plasma volatile fatty acid (VFA) concentrations, and faecal bacterial abundance in overweight and moderate-condition mares. Five overweight adult mixed-breed mares and five adult mixed-breed mares in moderate condition were housed individually and limit-fed orchard grass (Dactylis glomerata) hay at 20 g/kg body weight (as fed) daily for 14 d. Forage DM and fibre digestibility were determined using AOAC methods; digestible energy was measured using bomb calorimetry; plasma and faecal VFA concentrations were determined by use of GC and MS; faecal Firmicutes, Bacteroidetes, Fibrobacter succinogenes, Ruminococcus flavefaciens and total bacteria abundance was determined by quantitative real-time PCR using previously designed phylum-specific 16S ribosomal RNA gene primers. No differences in hay digestibility, faecal VFA concentrations or faecal bacterial abundance were detected between overweight and moderate-condition mares. Mean plasma acetate concentrations were higher (P = 0·03) in overweight (1·55 (range 1·43-1·65) mmol/l) v. moderate-condition (1·39 (range 1·22-1·47) mmol/l) mares. We conclude that the higher plasma acetate in overweight mares should be further investigated as a potential link between gut microbes and obesity in horses.

2.
J Food Prot ; 77(5): 722-31, 2014 May.
Article in English | MEDLINE | ID: mdl-24780325

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in cattle gastrointestinal tracts. In this study, prevalence and distribution of E. coli virulence genes (stx1, stx2, hlyA, and eaeA) were assessed in a cow-calf pasture-based production system. Angus cows (n = 90) and their calves (n = 90) were kept in three on-farm locations, and fecal samples were collected at three consecutive times (July, August, and September 2011). After enrichment of samples, stx1, stx2, eaeA, and hlyA were amplified and detected with a multiplex PCR (mPCR) assay. Fecal samples positive for stx genes were obtained from 93.3% (84 of 90) of dams and 95.6% (86 of 90) of calves at one or more sampling times. Age class (dam or calf), spatial distribution of cattle (farm locations B, H, K), and sampling time influenced prevalence and distribution of virulence genes in the herd. From 293 stx-positive fecal samples, 744 E. coli colonies were isolated. Virulence patterns of isolates were determined through mPCR assay: stx1 was present in 41.9% (312 of 744) of the isolates, stx2 in 6.5% (48 of 744), eaeA in 4.2% (31 of 744), and hlyA in 2.4% (18 of 744). Prevalence of non-O157 STEC was high among the isolates: 33.8% (112 of 331) were STEC O121, 3.6% (12 of 331) were STEC O103, and 1.8% (6 of 331) were STEC O113. One isolate (0.3%) was identified as STEC O157. Repetitive element sequence-based PCR (rep-PCR) fingerprinting was used to study genetic diversity of stx-positive E. coli isolates. Overall, rep-PCR fingerprints were highly similar, supporting the hypothesis that strains are transmitted between animals but not necessarily from a dam to its calf. Highly similar STEC isolates were obtained at each sampling time, but isolates obtained from dams were more diverse than those from calves, suggesting that strain differences in transference may exist. Understanding the transfer of E. coli from environmental and animal sources to calves may aid in developing intervention strategies to reduce E. coli colonization of young cattle.


Subject(s)
Cattle Diseases/microbiology , Escherichia coli Infections/veterinary , Shiga-Toxigenic Escherichia coli/growth & development , Animal Husbandry , Animals , Cattle , Cattle Diseases/transmission , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Feces/microbiology , Female , Male , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...