Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 236(3): 852-863, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35879859

ABSTRACT

Plants secrete malate from guard cells to apoplast under stress conditions and exogenous malate induces stomatal closure. Malate is considered an extracellular chemical signal of stomatal closure. However, the molecular mechanism of malate-induced stomatal closure is not fully elucidated. We investigated responses of stomatal aperture, ion channels, and cytosolic Ca2+ to malate. A treatment with malate induced stomatal closure in Arabidopsis thaliana wild-type plants, but not in the mutants deficient in the slow (S-type) anion channel gene SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1). The treatment with malate increased S-type anion currents in guard-cell protoplasts of wild-type plants but not in the slac1 mutant. In addition, extracellular rather than intracellular application of malate increased the S-type currents of constitutively active mutants of SLAC1, which have kinase-independent activities, in a heterologous expression system using Xenopus oocytes. The treatment with malate transiently increased cytosolic Ca2+ concentration in the wild-type Arabidopsis guard cells and the malate-induced stomatal closure was inhibited by the Ca2+ channel blocker and the Ca2+ chelator. These results indicate that extracellular malate directly activates SLAC1 and simultaneously stimulates Ca2+ signalling in guard cells, resulting in steady and solid activation of SLAC1 for stomatal closure.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Anions/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chelating Agents/metabolism , Ion Channels/metabolism , Malates/metabolism , Membrane Proteins/metabolism , Plant Stomata/physiology
2.
Biosci Biotechnol Biochem ; 86(10): 1362-1367, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-35867880

ABSTRACT

A primary metabolite malate is secreted from guard cells in response to the phytohormone abscisic acid (ABA) and elevated CO2. The secreted malate subsequently facilitates stomatal closure in plants. Here, we investigated the molecular mechanism of malate-induced stomatal closure using inhibitors and ABA signaling component mutants of Arabidopsis thaliana. Malate-induced stomatal closure was impaired by a protein kinase inhibitor, K252a, and also by the disruption of a receptor-like kinase GHR1, which mediates activation of calcium ion (Ca2+) channel by reactive oxygen species (ROS) in guard cells. Malate induced ROS production in guard cells while the malate-induced stomatal closure was impaired by a peroxidase inhibitor, salicylhydroxamic acid, but not by the disruption of Nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) oxidases, RBOHD and RBOHF. The malate-induced stomatal closure was impaired by Ca2+ channel blockers, verapamil, and niflumic acid. These results demonstrate that the malate signaling is mediated by GHR1 and ROS in Arabidopsis guard cells.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Carbon Dioxide/metabolism , Malates/metabolism , Malates/pharmacology , NAD/metabolism , Niflumic Acid/metabolism , Oxidoreductases/metabolism , Peroxidases/metabolism , Phosphates/metabolism , Plant Growth Regulators/metabolism , Plant Stomata/metabolism , Protein Kinase Inhibitors , Protein Kinases , Reactive Oxygen Species/metabolism , Verapamil
3.
Biosci Biotechnol Biochem ; 86(1): 37-46, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34718409

ABSTRACT

Arsenic is toxic for plants. Our previous results showed that the application of proline enhanced the sensitivity of tobacco BY-2 cells to arsenate. In order to clarify the enhancement mechanism, we investigated the effects of other amino acids on the arsenate-stressed BY-2 cells. Glutamate at up to 10 m m did not affect the cell growth in the absence or presence of arsenate. Arginine at up to 10 m m did not affect the growth in the absence of arsenate but arginine at 10 m m enhanced the inhibition of the cell growth by arsenate. Alanine at up to 10 m m did not affect the cell growth under nonstressed condition but alanine at 10 m m significantly improved the cell growth under arsenate stress. These results suggest that alanine mitigates arsenate stress in BY-2 cells and that arginine like proline enhances the sensitivity of BY-2 cells to arsenate.


Subject(s)
Arsenates
4.
Plant Cell Physiol ; 60(10): 2263-2271, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31241163

ABSTRACT

Signal crosstalk between jasmonate and ethylene is crucial for a proper maintenance of defense responses and development. Although previous studies reported that both jasmonate and ethylene also function as modulators of stomatal movements, the signal crosstalk mechanism in stomatal guard cells remains unclear. Here, we show that the ethylene signaling inhibits jasmonate signaling as well as abscisic acid (ABA) signaling in guard cells of Arabidopsis thaliana and reveal the signaling crosstalk mechanism. Both an ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and an ethylene-releasing compound ethephon induced transient stomatal closure, and also inhibited methyl jasmonate (MeJA)-induced stomatal closure as well as ABA-induced stomatal closure. The ethylene inhibition of MeJA-induced stomatal closure was abolished in the ethylene-insensitive mutant etr1-1, whereas MeJA-induced stomatal closure was impaired in the ethylene-overproducing mutant eto1-1. Pretreatment with ACC inhibited MeJA-induced reactive oxygen species (ROS) production as well as ABA-induced ROS production in guard cells but did not suppress ABA activation of OPEN STOMATA 1 (OST1) kinase in guard cell-enriched epidermal peels. The whole-cell patch-clamp analysis revealed that ACC attenuated MeJA and ABA activation of S-type anion channels in guard cell protoplasts. However, MeJA and ABA inhibitions of Kin channels were not affected by ACC pretreatment. These results suggest that ethylene signaling inhibits MeJA signaling and ABA signaling by targeting S-type anion channels and ROS but not OST1 kinase and K+ channels in Arabidopsis guard cells.


Subject(s)
Acetates/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Cyclopentanes/metabolism , Ethylenes/metabolism , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Protein Kinases/metabolism , Signal Transduction , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ion Channels/genetics , Ion Channels/metabolism , Plant Stomata/genetics , Plant Stomata/physiology , Protein Kinases/genetics , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...