Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(9): 15680-15690, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859213

ABSTRACT

High-quality-factor optical microresonators have become an appealing object for numerous applications. However, the mid-infrared band experiences a lack of applicable materials for nonlinear photonics. Crystalline germanium demonstrates attractive material properties such as high nonlinear refractive index, large transparency window including the mid-IR band, particularly long wave multiphonon absorption limit. Nevertheless, the reported optical losses in germanium microresonators might not allow the potential of the Ge-based devices to be revealed. In this study, we report the fabrication of germanium microresonators with radii of 1.35 and 1.5 mm, exhibiting exceptional quality factors (Q-factors) exceeding 20 million, approaching the absorption-limited values at a wavelength of 2.68 µm. These Q-factors are a hundred times higher than previously reported, to the best of our knowledge. We measured the two-photon absorption coefficient combined with free-carrier absorption leveraging the high-Q of the resonators (obtained ßTPA = (0.71 ± 0.12) · 10-8 m/W at 2.68 µm). This research underscores the potential of whispering gallery mode microresonators as valuable tools for measuring absorption coefficients at different wavelengths, providing a comprehensive analysis of various loss mechanisms. Furthermore, the exceptional Q-factors observed in germanium microresonators open intriguing opportunities for the advancement of germanium-based photonics within the mid-infrared spectral band.

2.
Sci Rep ; 13(1): 9830, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37330585

ABSTRACT

Narrow-linewidth lasers are in extensive demand for numerous cutting-edge applications. Such lasers operating at the visible range are of particular interest. Self-injection locking of a laser diode frequency to a high-Q whispering gallery mode is an effective and universal way to achieve superior laser performance. We demonstrate ultranarrow lasing with less than 10 Hz instantaneous linewidth for 20 [Formula: see text]s averaging time at 638 nm using a Fabry-Pérot laser diode locked to a crystalline MgF[Formula: see text] microresonator. The linewidth measured with a [Formula: see text]-separation line technique that characterizes 10 ms stability is as low as 1.4 kHz. Output power exceeds 80 mW. Demonstrated results are among the best for visible-range lasers in terms of linewidth combined with solid output power. We additionally report the first demonstration of a gain-switched regime for such stabilized Fabry-Pérot laser diode showing a high-contrast visible frequency comb generation. Tunable linespacing from 10 MHz to 3.8 GHz is observed. We demonstrated that the beatnote between the lines has sub-Hz linewidth and experiences spectral purification in the self-injection locking regime. This result might be of special importance for spectroscopy in the visible range.


Subject(s)
Lasers, Semiconductor , Light , Injections
SELECTION OF CITATIONS
SEARCH DETAIL
...