Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1069830, 2023.
Article in English | MEDLINE | ID: mdl-36778691

ABSTRACT

Hexokinase1 (HXK1) is a bifunctional enzyme that plays indispensable roles in plant growth, nitrogen utilization, and stress resistance. However, information on the HXK family members of strawberries and their functions in glucose sensing and metabolic regulation is scarce. In the present study, four HXKs were firstly identified in the genome of Fragaria vesca and F. pentaphylla. The conserved domains of the HXK1s were confirmed, and a site-directed mutation (S177A) was introduced into the FpHXK1. FpHXK1, which shares the highest identity with the AtHXK1 was able to restore the glucose sensitivity and developmental defects of the Arabidopsis gin2-1 mutant, but not its kinase-activity-impaired mutant (FpHXK1S177A ). The transcription of FpHXK1 was dramatically up-regulated under PEG-simulated drought stress conditions. The inhibition of the HXK kinase activity delayed the strawberry plant's responses to drought stress. Transient overexpression of the FpHXK1 and its kinase-impaired mutant differentially affected the level of glucose, sucrose, anthocyanins, and total phenols in strawberry fruits. All these results indicated that the FpHXK1, acting as a glucose sensor, was involved in drought stress response and sugar metabolism depending on its kinase activity.

2.
Int J Mol Sci ; 23(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36012507

ABSTRACT

Huanglongbing (HLB) is an obstinate disease in the citrus industry. No resistant citrus resources were currently available, but various degrees of Huanglongbing tolerance exist in different germplasm. Citrus junos is emerging as one of the popular rootstocks widely used in the citrus production. However, its responses to the HLB causal agent, Candidatus Liberibacter asiaticus (CLas), were still elusive. In the current study, we investigated the physiological, anatomical, and metabolomic responses of a C. junos rootstock 'Pujiang Xiangcheng' by a controlled CLas grafting inoculation. The summer flushes and roots were impaired at 15 weeks after inoculation, although typical leaf symptomatic phenotypes were not obvious. The chlorophyll pigments and the photosynthetic rate were compromised. The phloem sieve tubes were still working, despite the fact that the callose was deposited and the starch granules were accumulated in the phloem cells. A wide, targeted metabolomic analysis was carried out to explore the systematic alterations of the metabolites at this early stage of infection in the leaves and root system. The differentially accumulated metabolites in the CLas-affected leaves and roots compared with the mock-inoculation control tissues revealed that distinct responses were obvious. Besides the commonly observed alteration of sugar and amino acids, the active break down of starch in the roots was discovered. The different types of fatty acids were altered in the two tissues, with a more pronounced content decline in the roots. Our results not only provided fundamental knowledge about the response of the C. junos rootstock to the HLB disease, but also presented new insights into the host-pathogen interaction in the early stages.


Subject(s)
Citrus , Rhizobiaceae , Liberibacter , Plant Diseases , Plant Leaves , Rhizobiaceae/physiology , Starch
SELECTION OF CITATIONS
SEARCH DETAIL
...