Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Magn Reson Imaging ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703135

ABSTRACT

BACKGROUND: Hypertension (HTN) and type 2 diabetes mellitus (T2DM) are both associated with left ventricular (LV) and left atrial (LA) structural and functional abnormalities; however, the relationship between the left atrium and ventricle in this population is unclear. PURPOSE: To identify differences between hypertensive patients with and without T2DM as the basis for further investigation the atrioventricular coupling relationship. STUDY TYPE: Cross-sectional, retrospective study. POPULATION: 89 hypertensive patients without T2DM [HTN (T2DM-)] (age: 58.4 +/- 11.9 years, 48 male), 62 hypertensive patients with T2DM [HTN (T2DM+)] (age: 58.5 +/- 9.1 years, 32 male) and 70 matched controls (age: 55.0 +/- 9.6 years, 37 male). FIELD STRENGTH/SEQUENCE: 2D balanced steady-state free precession cine sequence at 3.0 T. ASSESSMENT: LA reservoir, conduit, and booster strain (εs, εe, and εa) and strain rate (SRs, SRe, and SRa), LV radial, circumferential and longitudinal peak strain (PS) and peak systolic strain rate and peak diastolic strain rate (PSSR and PDSR) were derived from LA and LV cine images and compared between groups. STATISTICAL TESTS: Chi-square or Fisher's exact test, one-way analysis of variance, analysis of covariance, Pearson's correlation, multivariable linear regression analysis, and intraclass correlation coefficient. A P value <0.05 was considered significant. RESULTS: Compared with controls, εs, εe, SRe and PS-longitudinal, PDSR-radial, and PDSR-longitudinal were significantly lower in HTN (T2DM-) group, and they were even lower in HTN (T2DM+) group than in both controls and HTN (T2DM-) group. SRs, εa, SRa, as well as PS-radial, PS-circumferential, PSSR-radial, and PSSR-circumferential were significantly lower in HTN (T2DM+) compared with controls. Multivariable regression analyses demonstrated that: T2DM and PS-circumferential and PS-longitudinal (ß = -4.026, -0.486, and -0.670, respectively) were significantly associated with εs; T2DM and PDSR-radial and PDSR-circumferential were significantly associated with εe (ß = -3.406, -3.352, and -6.290, respectively); T2DM and PDSR-radial were significantly associated with SRe (ß = 0.371 and 0.270, respectively); T2DM and PDSR-longitudinal were significantly associated with εa (ß = -1.831 and 5.215, respectively); and PDSR-longitudinal was significantly associated with SRa (ß = 1.07). DATA CONCLUSION: In hypertensive patients, there was severer LA dysfunction in those with coexisting T2DM, which may be associated with more severe LV dysfunction and suggests adverse atrioventricular coupling. EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 3.

2.
Cardiovasc Diabetol ; 23(1): 133, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654269

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) can increase the risk of morbidity and mortality of cardiovascular disease and obstructive coronary artery disease (OCAD), which usually have a poor prognosis. This study aimed to explore the impact of MetS on left ventricular (LV) deformation and function in OCAD patients and investigate the independent factors of impaired LV function and deformation. MATERIALS AND METHODS: A total of 121 patients with OCAD and 52 sex- and age-matched controls who underwent cardiac magnetic resonance scanning were enrolled in the study. All OCAD patients were divided into two groups: OCAD with MetS [OCAD(MetS+), n = 83] and OCAD without MetS [OCAD(MetS-), n = 38]. LV functional and global strain parameters were measured and compared among the three groups. Multivariable linear regression analyses were constructed to investigate the independent factors of LV impairment in OCAD patients. Logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed to test the prediction efficiency of MetS for LV impairment. RESULTS: From controls to the OCAD(MetS-) group to the OCAD(MetS+) group, LV mass (LVM) increased, and LV global function index (LVGFI) and LV global longitudinal peak strain (GLPS) decreased (all p < 0.05). Compared with the OCAD(MetS-) group, the LV GLPS declined significantly (p = 0.027), the LVM increased (p = 0.006), and the LVGFI decreased (p = 0.043) in the OCAD(MetS+) group. After adjustment for covariates in OCAD patients, MetS was an independent factor of decreased LV GLPS (ß = - 0.211, p = 0.002) and increased LVM (ß = 0.221, p = 0.003). The logistic multivariable regression analysis and ROC analysis showed that combined MetS improved the efficiency of predicting LV GLPS reduction (AUC = 0.88) and LVM (AUC = 0.89) increase. CONCLUSIONS: MetS aggravated the damage of LV deformation and function in OCAD patients and was independently associated with LV deformation and impaired LV strain. Additionally, MetS increased the prediction efficiency of increased LVM and decreased LV GLPS. Early detection and intervention of MetS in patients with OCAD is of great significance.


Subject(s)
Metabolic Syndrome , Predictive Value of Tests , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Male , Female , Middle Aged , Metabolic Syndrome/physiopathology , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Aged , Case-Control Studies , Risk Assessment , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Artery Disease/complications , Magnetic Resonance Imaging, Cine , Risk Factors , Prognosis , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/complications
3.
J Magn Reson Imaging ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558213

ABSTRACT

BACKGROUND: Alcoholic cardiomyopathy (ACM) can lead to progressive cardiac dysfunction and heart failure, but little is known about biventricular impairment and ventricular interdependence (VI) in ACM patients. PURPOSE: To use cardiac MRI to investigate biventricular impairment and VI in ACM patients. STUDY TYPE: Retrospective. POPULATION: Forty-one male patients with ACM and 45 sex- and age-matched controls. FIELD STRENGTH/SEQUENCE: 3.0 T/balanced steady-state free precession sequence, inversion recovery prepared echo-planar imaging sequence and phase-sensitive inversion recovery sequence. ASSESSMENT: Biventricular structure, function, and global strain (encompassing peak strain [PS], peak systolic, and diastolic strain rate), PS of interventricular septal (IVS), microvascular perfusion (including upslope and time to maximum signal intensity [TTM]), late gadolinium enhancement (LGE), and baseline characteristics were compared between the controls and ACM patients. STATISTICAL TESTS: Student's t-test, Mann-Whitney U test, Pearson's correlation, and multivariable linear regression models with a stepwise selection procedure. A two-tailed P value <0.05 was deemed as statistically significant. RESULTS: Compared to control subjects, ACM patients showed significantly biventricular adverse remodeling, reduced left ventricle (LV) global upslope and prolonged global TTM, and the presence of LGE. ACM patients were characterized by a significant decline in all global strain within the LV, right ventricle (RV), and IVS compared with the controls. RV global PS was significantly associated with LV global PS and IVS PS in radial, circumferential, and longitudinal directions. Multivariable analyses demonstrated the longitudinal PS of IVS was significantly correlated with RV global radial PS (ß = 0.614) and circumferential PS (ß = 0.545). Additionally, RV global longitudinal PS (GLPS) was significantly associated with radial PS of IVS (ß = -0.631) and LV GLPS (ß = 1.096). DATA CONCLUSION: ACM patients exhibited biventricular adverse structural alterations and impaired systolic and diastolic function. This cohort also showed reduced LV microvascular perfusion, the presence of LGE, and unfavorable VI. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

4.
Cardiovasc Diabetol ; 23(1): 90, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448890

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) has been linked to an increased risk of cardiovascular death, overall mortality and heart failure in patients with type 2 diabetes mellitus (T2DM). The present study investigated the additive effects of paroxysmal AF on left ventricular (LV) function and deformation in T2DM patients with or without AF using the cardiovascular magnetic resonance feature tracking (CMR-FT) technique. METHODS: The present study encompassed 225 T2DM patients differentiated by the presence or absence of paroxysmal AF [T2DM(AF+) and T2DM(AF-), respectively], along with 75 age and sex matched controls, all of whom underwent CMR examination. LV function and global strains, including radial, circumferential and longitudinal peak strain (PS), as well as peak systolic and diastolic strain rates (PSSR and PDSR, respectively), were measured and compared among the groups. Multivariable linear regression analysis was used to examine the factors associated with LV global strains in patients with T2DM. RESULTS: The T2DM(AF+) group was the oldest, had the highest LV end­systolic volume index, lowest LV ejection fraction and estimated glomerular filtration rate compared to the control and T2DM(AF-) groups, and presented a shorter diabetes duration and lower HbA1c than the T2DM(AF-) group. LV PS-radial, PS-longitudinal and PDSR-radial declined successively from controls through the T2DM(AF-) group to the T2DM(AF+) group (all p < 0.001). Compared to the control group, LV PS-circumferential, PSSR-radial and PDSR-circumferential were decreased in the T2DM(AF+) group (all p < 0.001) but preserved in the T2DM(AF-) group. Among all clinical indices, AF was independently associated with worsening LV PS-longitudinal (ß = 2.218, p < 0.001), PS-circumferential (ß = 3.948, p < 0.001), PS-radial (ß = - 8.40, p < 0.001), PSSR-radial and -circumferential (ß = - 0.345 and 0.101, p = 0.002 and 0.014, respectively), PDSR-radial and -circumferential (ß = 0.359 and - 0.14, p = 0.022 and 0.003, respectively). CONCLUSIONS: In patients with T2DM, the presence of paroxysmal AF further exacerbates LV function and deformation. Proactive prevention, regular detection and early intervention of AF could potentially benefit T2DM patients.


Subject(s)
Atrial Fibrillation , Cardiovascular System , Diabetes Mellitus, Type 2 , Humans , Atrial Fibrillation/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Ventricular Function, Left , Magnetic Resonance Spectroscopy
5.
J Magn Reson Imaging ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353473

ABSTRACT

BACKGROUND: Patients with restrictive cardiomyopathy (RCM) have impaired diastolic filling and hemodynamic congestion. Pulmonary transit time (PTT) and pulmonary blood volume index (PBVi) reflect the hemodynamic status, but the relationship with left ventricle (LV) dysfunction remains unclear. PURPOSE: To evaluate the PTT and PBVi in RCM patients, the association with diastolic dysfunction and LV deformation, and the effects on the occurrence of major adverse cardiac events (MACE) in RCM patients. STUDY TYPE: Retrospective. POPULATION: 137 RCM patients (88 men, age 58.80 ± 10.83 years) and 68 age- and sex-matched controls (46 men, age 57.00 ± 8.59 years). FIELD STRENGTH/SEQUENCE: 3.0T/Balanced steady-state free precession sequence, recovery prepared echo-planar imaging sequence, and phase-sensitive inversion recovery sequence. ASSESSMENT: The LV function and peak strain (PS) parameters were measured. The PTT was calculated and corrected by heart rate (PTTc). The PBVi was calculated as the product of PTTc and RV stroke volume index. STATISTICAL TESTS: Chi-squared test, student's t-test, Mann-Whitney U test, Pearson's or Spearman's correlation, multivariate linear regression, Kaplan-Meier survival analysis, and Cox regression models analysis. A P-value <0.05 was considered statistically significant. RESULTS: The PTTc showed a significant correlation with the E/A ratio (r = 0.282), and PBVi showed a significant correlation with the E/e' ratio, E/A ratio, and diastolic dysfunction stage (r = 0.222, 0.320, and 0.270). PTTc showed an independent association with LVEF, LV circumferential PS, and LV longitudinal PS (ß = 0.472, 0.299, and 0.328). In Kaplan-Meier analysis, higher PTTc and PBVi were significantly associated with MACE. In multivariable Cox regression analysis, PTTc was a significantly independent predictor of the MACE in combination with both cardiac MRI functional and tissue parameters (hazard ratio: 1.23/1.32, 95% confidence interval: 1.10-1.42/1.20-1.46). DATA CONCLUSION: PTTc and PBVi are associated with diastolic dysfunction and deteriorated LV deformation, and PTTc independently predicts MACE in patients with RCM. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

6.
Curr Diabetes Rev ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38310480

ABSTRACT

The global prevalence of type-2 diabetes mellitus (T2DM) has caused harm to human health and economies. Cardiovascular disease is one main cause of T2DM mortality. Increased prevalence of diabetes and associated heart failure (HF) is common in older populations, so accurately evaluating heart-related injury and T2DM risk factors and conducting early intervention are important. Quantitative cardiovascular system imaging assessments, including functional imaging during cardiovascular disease treatment, are also important. The left-ventricular ejection fraction (LVEF) has been traditionally used to monitor cardiac function; it is often preserved or increased in early T2DM, but subclinical heart deformation and dysfunction can occur. Myocardial strains are sensitive to global and regional heart dysfunction in subclinical T2DM. Cardiac magnetic resonance feature-tracking technology (CMR-FT) can visualize and quantify strain and identify subclinical myocardial injury for early management, especially with preserved LVEF. Meanwhile, CMR-FT can be used to evaluate the multiple cardiac chambers involvement mediated by T2DM and the coexistence of complications. This review discusses CMR-FT principles, clinical applications, and research progress in the evaluation of myocardial strain in T2DM.

7.
J Magn Reson Imaging ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966904

ABSTRACT

BACKGROUND: Understanding the impact of aortic regurgitation (AR) on hypertensive patients' hearts is important. PURPOSE: To assess left ventricular (LV) strain and structure in hypertensive patients and investigate the relationship with AR severity. STUDY TYPE: Retrospective. POPULATION: 263 hypertensive patients (99 with AR) and 62 controls, with cardiac MRI data. FIELD STRENGTH/SEQUENCE: Balanced steady-state free precession (bSSFP) sequence at 3.0T. ASSESSMENT: AR was classified as mild, moderate, or severe based on echocardiographic findings. LV geometry was classified as normal, concentric remodeling, eccentric hypertrophy, or concentric hypertrophy based on MRI assessment of LV mass/volume ratio and LV Mass index (LVMI). LV global radial peak strain (GRPS), global circumferential peak strain (GCPS), and global longitudinal peak strain (GLPS) were obtained by post-processing bSSFP cine datasets using commercial software. STATISTICAL TESTS: ANOVA, Kruskal-Wallis test, Spearman's correlation coefficients (r), chi-square test, and multivariable linear regression analysis. A P value <0.05 was considered statistically significant. RESULTS: Hypertensive patients with AR had significantly lower LV myocardial strain and higher LVMI than the group without AR (GRPS 26.25 ± 12.23 vs. 34.53 ± 9.85, GCPS -17.4 ± 5.84 vs. -20.57 ± 3.57, GLPS -9.86 ± 4.08 vs. -12.95 ± 2.94, LVMI 90.56 ± 38.56 vs.58.84 ± 17.55). Of the 99 patients with AR, 56 had mild AR, 26 had moderate AR and 17 had severe AR. The degree of AR was significantly negatively correlated to the absolute values of LV GRPS, GCPS and GLPS (r = -0.284 - -0.416). LV eccentric hypertrophy increased significantly with AR severity (no AR 21.3%, mild AR 42.9%, moderate AR 73.1%, severe AR 82.4%). In multivariable analysis, the degree of AR was an independent factor affecting LV global strain and LVMI even after considering confounding factors (ß values for global myocardial strain were -0.431 to -0.484, for LVMI was 0.646). DATA CONCLUSION: Increasing AR severity leads to decreased cardiac function and worse ventricular geometric phenotypes in hypertensive patients. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.

8.
Cardiovasc Diabetol ; 22(1): 317, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985989

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is the most common metabolic disease worldwide and a major risk factor for adverse cardiovascular events, while the additive effects of DM on left ventricular (LV) deformation in the restrictive cardiomyopathy (RCM) cohort remain unclear. Accordingly, we aimed to investigate the additive effects of DM on LV deformation in patients with RCM. MATERIALS AND METHODS: One hundred thirty-six RCM patients without DM [RCM(DM-)], 46 with DM [RCM (DM+)], and 66 age- and sex-matched control subjects who underwent cardiac magnetic resonance (CMR) scanning were included. LV function, late gadolinium enhancement (LGE) type, and LV global peak strains (including radial, circumferential, and longitudinal directions) were measured. The determinant of reduced LV global myocardial strain for all RCM patients was assessed using multivariable linear regression analyses. The receiver operating characteristic curve (ROC) was performed to illustrate the relationship between DM and decreased LV deformation. RESULTS: Compared with the control group, RCM (DM-) and RCM(DM+) patients presented increased LV end-diastolic index and end-systolic volume index and decreased LV ejection fraction. LV GPS in all three directions and longitudinal PDSR progressively declined from the control group to the RCM(DM-) group to the RCM(DM+) group (all p < 0.05). DM was an independent determinant of impaired LV GPS in the radial, circumferential, and longitudinal directions and longitudinal PDSR (ß = - 0.217, 0.176, 0.253, and - 0.263, all p < 0.05) in RCM patients. The multiparameter combination, including DM, showed an AUC of 0.81(95% CI 0.75-0.87) to predict decreased LV GLPS and an AUC of 0.69 (95% CI 0.62-0.76) to predict decreased LV longitudinal PDSR. CONCLUSIONS: DM may have an additive deleterious effect on LV dysfunction in patients with RCM, especially diastolic dysfunction in RCM patients, indicating the importance of early identification and initiation of treatment of DM in patients with RCM.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Restrictive , Diabetes Mellitus , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left , Cardiomyopathy, Restrictive/complications , Contrast Media , Gadolinium , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Stroke Volume , Diabetes Mellitus/diagnosis , Magnetic Resonance Imaging, Cine/adverse effects
9.
Cardiovasc Diabetol ; 22(1): 256, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735418

ABSTRACT

BACKGROUND: Diabetic peripheral neuropathy (DPN) has been shown to be independently associated with cardiovascular events and mortality. This study aimed to evaluate changes in left ventricular (LV) microvascular perfusion and myocardial deformation in type 2 diabetes mellitus (T2DM) patients with and without DPN, as well as to investigate the association between myocardial perfusion and LV deformation. METHODS: Between October 2015 and July 2022, one hundred and twenty-three T2DM patients without DPN, fifty-four patients with DPN and sixty age­ and sex­matched controls who underwent cardiovascular magnetic resonance imaging were retrospectively analyzed. LV myocardial perfusion parameters at rest, including upslope, time to maximum signal intensity (TTM), max signal intensity (max SI), and myocardial strains, including global radial, circumferential and longitudinal strain (GRS, GCS and GLS, respectively), were calculated and compared among the groups with One­way analysis of variance. Univariable and multivariable linear regression analyses were performed to explore the independent factors influencing LV myocardial perfusion indices and LV strains in diabetes. RESULTS: The LV GLS, upslope and max SI were significantly deteriorated from controls, through patients without DPN, to patients with DPN (all P < 0.001). Compared with controls, TTM was increased and LV GRS and GCS were decreased in both patient groups (all P < 0.05). Multivariable regression analyses considering covariates showed that DPN was independently associated with reduced upslope, max SI and LV GLS (ß = - 0.360, - 2.503 and 1.113, p = 0.021, 0.031 and 0.010, respectively). When the perfusion indices upslope and max SI were included in the multivariable analysis for LV deformation, DPN and upslope (ß = 1.057 and - 0.870, p = 0.020 and 0.018, respectively) were significantly associated with LV GLS. CONCLUSION: In patients with T2DM, there was more severe LV microvascular and myocardial dysfunction in patients with complicated DPN, and deteriorated subclinical LV systolic dysfunction was associated with impaired myocardial circulation.


Subject(s)
Diabetes Mellitus, Type 2 , Peripheral Nervous System Diseases , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Retrospective Studies , Heart , Magnetic Resonance Imaging
10.
Cardiovasc Diabetol ; 22(1): 154, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37381007

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) frequently coexists with obstructive coronary artery disease (OCAD), which are at increased risk for cardiovascular morbidity and mortality. This study aimed to investigate the impact of coronary obstruction on myocardial microcirculation function in T2DM patients, and explore independent predictors of reduced coronary microvascular perfusion. METHODS: Cardiac magnetic resonance (CMR) scanning was performed on 297 T2DM patients {188 patients without OCAD [T2DM(OCAD -)] and 109 with [T2DM(OCAD +)]} and 89 control subjects. CMR-derived perfusion parameters, including upslope, max signal intensity (MaxSI), and time to maximum signal intensity (TTM) in global and segmental (basal, mid-ventricular, and apical slices) were measured and compared among observed groups. According to the median of Gensini score (64), T2DM(OCAD +) patients were subdivided into two groups. Univariable and multivariable linear regression analyses were performed to identify independent predictors of microcirculation dysfunction. RESULTS: T2DM(OCAD -) patients, when compared to control subjects, had reduced upslope and prolonged TTM in global and all of three slices (all P < 0.05). T2DM(OCAD +) patients showed a significantly more severe impairment of microvascular perfusion than T2DM(OCAD -) patients and control subjects with a more marked decline upslope and prolongation TTM in global and three slices (all P < 0.05). From control subjects, through T2DM(OCAD +) patients with Gensini score ≤ 64, to those patients with Gensini score > 64 group, the upslope declined and TTM prolonged progressively in global and mid-ventricular slice (all P < 0.05). The presence of OCAD was independently correlated with reduced global upslope (ß = - 0.104, P < 0.05) and global TTM (ß = 0.105, P < 0.05) in patients with T2DM. Among T2DM(OCAD +) patients, Gensini score was associated with prolonged global TTM (r = 0.34, P < 0.001). CONCLUSIONS: Coronary artery obstruction in the context of T2DM exacerbated myocardial microcirculation damage. The presence of OCAD and Gensini score were independent predictors of decreased microvascular function. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Coronary Artery Disease , Coronary Occlusion , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Heart , Perfusion , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/etiology
11.
J Magn Reson Imaging ; 58(4): 1125-1136, 2023 10.
Article in English | MEDLINE | ID: mdl-36733221

ABSTRACT

BACKGROUND: Mitral regurgitation may occur when hypertension causes left ventricular (LV) and left atrial (LA) remodeling. However, its role in LA function in hypertensive patients remains unclear. PURPOSE: To explore how mitral regurgitation affects LA function in hypertension and to investigate atrioventricular interaction in hypertensive patients with mitral regurgitation. STUDY TYPE: Retrospective. POPULATION: A total of 193 hypertensive cases and 64 controls. FIELD STRENGTH/SEQUENCE: A 3.0 T/balanced steady-state free precession. ASSESSMENT: LA volume (LAV), LA strain (reservoir, conduit, and active), LA ejection fraction, and LV strain (global peak longitudinal [GLS], circumferential [GCS], and radial strain [GRS]) were evaluated and compared among groups. Regurgitant fraction (RF) was evaluated in regurgitation patients and used to subdivide patients into mild (RF: 0%-30%), moderate (RF: 30%-50%), and severe (RF: >50%) regurgitation categories. STATISTICAL TESTS: One-way analysis of variance, Spearman and Pearson's correlation coefficients (r), and multivariable linear regression analysis. A P value <0.05 was considered statistically significant. RESULTS: Hypertensive patients without mitral regurgitation showed significantly impaired LA reservoir and conduit functions and significantly decreased LV GLS but preserved pump function and LAV compared to controls (P = 0.193-1.0). Hypertensive cases with mild regurgitation (N = 22) had significantly enlarged LAV and further reduced LA reservoir function, while the group with moderate regurgitation (N = 20) showed significantly reduced LA pump function, further impaired conduit function, and significantly reduced LV strain. The severe regurgitation (N = 13) group demonstrated significantly more severely impaired LA and LV functions and LAV enlargement. Multivariable linear regression showed that regurgitation degree, GRS, GCS, and GLS were independently correlated with the LA reservoir, conduit, and active strain in hypertensive patients with mitral regurgitation. DATA CONCLUSION: Mitral regurgitation may exacerbate LA and LV impairment in hypertension. Regurgitation degree, LV GRS, GCS, and GLS were independent determinants of the LA strain in hypertensive patients with mitral regurgitation, which demonstrated atrioventricular interaction. EVIDENCE LEVEL: 4. TECHNICAL EFFICACY: Stage 3.


Subject(s)
Atrial Fibrillation , Hypertension , Mitral Valve Insufficiency , Ventricular Dysfunction, Left , Humans , Mitral Valve Insufficiency/complications , Mitral Valve Insufficiency/diagnostic imaging , Retrospective Studies , Ventricular Function, Left , Ventricular Dysfunction, Left/complications , Ventricular Dysfunction, Left/diagnostic imaging , Hypertension/complications , Magnetic Resonance Imaging , Hypertrophy , Stroke Volume
12.
Curr Probl Cardiol ; 48(6): 101665, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36828047

ABSTRACT

Cardiovascular diseases pose a significant health and economic burden worldwide, with coronary artery disease still recognized as a major problem. It is closely associated with hypertension, diabetes, obesity, smoking, lack of exercise, poor diet, and excessive alcohol consumption, which may lead to macro- and microvascular abnormalities in the heart. Coronary artery stenosis reduces the local supply of oxygen and nutrients to the myocardium and results in reduced levels of myocardial perfusion, which can lead to more severe conditions and irreversible damage to myocardial tissues. Therefore, accurate evaluation of myocardial perfusion abnormalities in patients with these risk factors is critical. As technology advances, magnetic resonance myocardial perfusion imaging has become more accurate at evaluating the myocardial microcirculation and has shown a powerful ability to detect myocardial ischemia. The purpose of this review is to summarize the principle, research progress of acquisition and analysis, and clinical implementation of cardiovascular magnetic resonance (CMR) myocardial perfusion imaging.


Subject(s)
Coronary Artery Disease , Myocardial Perfusion Imaging , Humans , Myocardial Perfusion Imaging/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnosis , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Coronary Circulation , Predictive Value of Tests
13.
Cardiovasc Diabetol ; 22(1): 6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627647

ABSTRACT

BACKGROUND: Previous researches on large animal models of diabetic cardiomyopathy were insufficient. The aim of this study was to evaluate early changes in left ventricular (LV) function and morphology in diabetic pigs using a cardiac magnetic resonance (CMR) time-volume curve and feature tracking technique. METHODS: Streptozotocin (STZ) was used to induce diabetic in sixteen pigs. 3.0T MRI scanned the pig's heart before and 2, 6, 10 and 16 months after modelling. CMR biomarkers, including time-volume curve and myocardial strain, were compared to analyse the longitudinal changes in LV function and morphology. Pearson correlation was used to evaluate the relationship between LV strain and remodelling. Cardiac specimens were obtained at 6, 10, and 16 months after modelling to observe the myocardial ultrastructural and microstructure at different courses of diabetes. RESULTS: Twelve pigs developed diabetes. The 80% diastolic volume recovery rate (DVR) at 6 months after modelling was significantly higher than that before modelling (0.78 ± 0.08vs. 0.67 ± 0.15). The LV global longitudinal peak strain (GLPS) (- 10.21 ± 3.15 vs. - 9.74 ± 2.78 vs. - 9.38 ± 3.71 vs. - 8.71 ± 2.68 vs. - 6.59 ± 2.90%) altered gradually from the baseline data to 2, 6, 10 and 16 months after modelling. After 16 months of modelling, the LV remodelling index (LVRI) of pigs increased compared with that before modelling (2.19 ± 0.97 vs. 1.36 ± 0.45 g/ml). The LVRI and myocardial peak strain were correlated in diabetic pigs (r= - 0.40 to - 0.54), with GLPS being the most significant. Electron microscopy and Masson staining showed that myocardial damage and fibrosis gradually increased with the progression of the disease. CONCLUSION: Intravenous injection of STZ can induce a porcine diabetic cardiomyopathy model, mainly characterized by decreased LV diastolic function and strain changes accompanied by myocardial remodelling. The changes in CMR biomarkers could reflect the early myocardial injury of diabetic cardiomyopathy.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ventricular Dysfunction, Left , Animals , Swine , Ventricular Function, Left , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/etiology , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Imaging , Biomarkers , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Predictive Value of Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...