Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2404419, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018250

ABSTRACT

Herein, hierarchically structured microgrid frameworks of Co3O4 and carbon composite deposited on reduced graphene oxide (Co3O4@C/rGO) are demonstrated through the three-dimensioinal (3D) printing method, where the porous structure is controllable and the height and width are scalable, for dendrite-free Na metal deposition. The sodiophilicity, facile Na metal deposition kinetics, and NaF-rich solid electrolyte interphase (SEI) formation of cubic Co3O4 phase are confirmed by combined spectroscopic and computational analyses. Moreover, the uniform and reversible Na plating/stripping process on 3D-printed Co3O4@C/rGO host is monitored in real time using in situ transmission electron and optical microscopies. In symmetric cells, the 3D printed Co3O4@C/rGO electrode achieves a long-term stability over 3950 at 1 mA cm-2 and 1 mAh cm-2 with a superior Coulombic efficiency (CE) of 99.87% as well as 120 h even at 20 mA cm-2 and 20 mAh cm-2, far exceeding the previously reported carbon-based hosts for Na metal anodes. Consequently, the full cells of 3D-printed Na@Co3O4@C/rGO anode with 3D-printed Na3V2(PO4)3@C-rGO cathode (≈15.7 mg cm-2) deliver the high specific capacity of 97.97 mAh g-1 after 500 cycles with a high CE of 99.89% at 0.5 C, demonstrating the real operation of flexible Na metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...