Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474575

ABSTRACT

Li-rich manganese-based oxide (LRMO) cathode materials are considered to be one of the most promising candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity (250 mAh g-1) and low cost. However, the inevitable irreversible structural transformation during cycling leads to large irreversible capacity loss, poor rate performance, energy decay, voltage decay, etc. Based on the recent research into LRMO for LIBs, this review highlights the research progress of LRMO in terms of crystal structure, charging/discharging mechanism investigations, and the prospects of the solution of current key problems. Meanwhile, this review summarizes the specific modification strategies and their merits and demerits, i.e., surface coating, elemental doping, micro/nano structural design, introduction of high entropy, etc. Further, the future development trend and business prospect of LRMO are presented and discussed, which may inspire researchers to create more opportunities and new ideas for the future development of LRMO for LIBs with high energy density and an extended lifespan.

2.
ACS Appl Mater Interfaces ; 11(34): 30793-30800, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31385688

ABSTRACT

Rechargeable lithium-oxygen (Li-O2) batteries (LOBs) with extremely high theoretical energy density have been regarded as a promising next-generation energy storage technology. However, the limited cycle life, undesirable corrosion, and safety hazards are seriously limiting the practical application of the lithium metal anode in LOBs. Here, we demonstrate a rational design of the Li-Al alloy (LiAlx) anode that successfully achieves ultralong cycling life of LOBs with stable Li cycling. Through in situ high-current pretreatment technology, Al atoms accumulates, and a stable Al2O3-containing solid electrolyte interphase protective film formed on the LiAlx anode surface to suppress side reactions and O2 crossover. The cycling life of LOB with the protected LiAlx anode increases to 667 cycles under a fixed capacity of 1000 mA h g-1, as compared to 17 cycles without pretreatment. We believe that this in situ high-current pretreatment strategy presents a new vision to protect the lithium-containing alloy anodes, such as Li-Al, Li-Mg, Li-Sn, and Li-In alloys for stable and safe lithium metal batteries (Li-O2 and Li-S batteries).

3.
Nanoscale ; 6(12): 6911-24, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24835145

ABSTRACT

A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D electrode is fabricated using vacuum sputtering sequences to achieve self-assembly of distinct ITO nanoparticles on a continuous ITO-AgOx-ITO multilayer at room-temperature without applying conventional high-temperature vapour-liquid-solid growth, solution-based nanoparticle coating, or complicated nanopatterning techniques. Since the 3D electrode enhances the hole-extraction rate in OSCs owing to its high surface area and low effective series resistance for hole transport, OSCs based on this 3D electrode exhibit a power conversion efficiency that is 11-22% higher than that achievable in OSCs by means of conventional planar ITO film-type electrodes. A record high efficiency of 6.74% can be achieved in a bendable OSC fabricated on a poly(ethylene terephthalate) substrate.

4.
J Nanosci Nanotechnol ; 14(10): 8083-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942928

ABSTRACT

The synthesis of nanoscale CaB6 powder via the low temperature chemical reaction of Calcium chloride (CaCl2) with Sodium Borohyride (NaBH4) in vacuum has been investigated in this study. The reaction temperature was determined by differential scanning calorimetry and thermogravimetric analysis (DSC and TG). Crystallization process was provided through studying the influence of heat preservation time on the crystal particles morphologies in vacuum. X-ray diffraction (XRD) was used to investigate the phase and structure of CaB6. The characterization for microstructure was performed by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The elemental analysis was conducted by X-ray photoelectron spectroscopy (XPS). It is concluded that CaB6 nanoparticles can be successfully prepared under low temperature at 500 degrees C. The results showed that in vacuum, 2 hours heat preservation time is enough for the reaction to complete at this temperature. The average size of crystal grains is 25.1 nm with high crystallinity and cubic shaped, which particles size is at the range of 20-100 nm. Longer heat preservation time more than 2 hours will make CaB6 particles connected together to form hard aggregations, that is the sintering process occurred under this temperature. However, the crystal grain size changed unobviously accompanying the holding time prolong due to the high chemical stability of CaB6. The atomic ratio of B to Ca is 5.37:1, less than but close to its stoichiometric ratio 6:1. The synthesis process and mechanism were investigated in this paper.

5.
Nanotechnology ; 19(30): 305709, 2008 Jul 30.
Article in English | MEDLINE | ID: mdl-21828776

ABSTRACT

Ultra-thin W(18)O(49) nanowires were initially obtained by a simple solvothermal method using tungsten chloride and cyclohexanol as precursors. Thermal processing of the resulting bundled nanowires has been carried out in air in a tube furnace. The morphology and phase transformation behavior of the as-synthesized nanowires as a function of annealing temperature have been characterized by x-ray diffraction and electron microscopy. The nanostructured bundles underwent a series of morphological evolution with increased annealing temperature, becoming straighter, larger in diameter, and smaller in aspect ratio, eventually becoming irregular particles with size up to 5 µm. At 500 °C, the monoclinic W(18)O(49) was completely transformed to monoclinic WO(3) phase, which remains stable at high processing temperature. After thermal processing at 400 °C and 450 °C, the specific surface areas of the resulting nanowires dropped to 110 m(2) g(-1) and 66 m(2) g(-1) respectively, compared with that of 151 m(2) g(-1) for the as-prepared sample. This study may shed light on the understanding of the geometrical and structural evolution occurring in nanowires whose working environment may involve severe temperature variations.

SELECTION OF CITATIONS
SEARCH DETAIL
...