Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982621

ABSTRACT

Layered transition metal dichalcogenides (TMDs) have exhibited huge potential as anode materials for sodium-ion batteries. Most of them usually store sodium via an intercalation-conversion mechanism, but niobium sulfide (NbS2) may be an exception. Herein, through in situ transmission electron microscopy, we carefully investigated the insertion behaviors of Na ions in NbS2 and directly visualized anisotropic sodiation kinetics. Lattice-resolution imaging coupled with density functional theory calculations reveals the preferential diffusion of Na ions within layers of NbS2, accompanied by observable interlayer lattice expansion. Impressively, the Na-inserted layers can still withstand in situ mechanical testing. Further in situ observation vertical to the a/b plane of NbS2 tracked the illusive conversion reaction, which could result from interlayer gliding or wrinkling associated with stress accumulation. In situ electron diffraction measurements ruled out the possibility of such a conversion mechanism and identified a phase transition from pristine 3R-NbS2 to 2H-NaNbS2. Therefore, the NbS2 anode stores Na ions via only the intercalation mechanism, which conceptually differs from the well-known intercalation-conversion mechanism of typical TMDs. These findings not only decipher the whole sodiation process of the NbS2 anode but also provide valuable reference for unraveling the precise sodium storage mechanism in other TMDs.

2.
ACS Appl Mater Interfaces ; 16(4): 4772-4783, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38243846

ABSTRACT

The Ni-rich Co-poor layered cathode (LiNixCoyMn1-x-yO2, x ≥ 0.9) is a candidate for the next-generation lithium-ion batteries due to its high specific capacity and low cost. However, the inherent structural instability and slow kinetics of Li+ migration hinder their large-scale application. Mo doping is proposed to enhance the crystal structure stability of LiNi0.9Co0.05Mn0.05O2 and to ensure the preservation of the spherical secondary particles after the cycle. The characterization results indicate that Mo doping not only significantly relieves the lattice strain accompanied by H2 → H3 phase transition but also alleviates particle stress accumulation to avoid pulverization. The Mo-modification allows the generation of uniform fine primary particulates and further agglomeration into the smooth secondary particles to inhibit electrolyte penetration. Hence, the Mo-modified sample NCM90-1%Mo displays an excellent capacity retention of 85.9% after 200 cycles at 0.5 C current density, which is 23.8% higher than that of the pristine NCM90. In addition, with the expansion of the Li slab to accelerate Li+ diffusion and the fine primary particles to shorten the Li+ pathway, the NCM90-1%Mo sample exhibits a high discharge capacity of 150 mAh g-1 at 5 C current density. This work provides a new thought for the design and construction of high-capacity cathode materials for the next-generation lithium-ion batteries.

3.
J Colloid Interface Sci ; 657: 893-902, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091912

ABSTRACT

The structure instability and cycling decay of silicon (Si) anode triggered by stress buildup hinder its practical application to next-generation high-energy-density lithium-ion batteries (LIBs). Herein, a cross-linking polymeric network as a self-healing binder for Si anode is developed by in situ polymerization of tannic acid (TA) and polyacrylic acid (PAA) binder labelled as TA-c-PAA. The branched TA as a physical cross-linker complexes with PAA main chains through abundant dynamic hydrogen bonds, endowing the cross-linking TA-c-PAA binder with unique self-healing property and strong adhesion for Si anode. Benefiting from the mechanical robust and hard adhesion, the Si@TA-c-PAA electrode exhibits high reversible specific capacities (3250 mAh/g at 0.05C (1C = 4000 mA g-1)), excellent rate capability (1599 mAh/g at 2C), and impressive cycling stability (1742 mAh/g at 0.25C after 450 cycles). After Ex situ morphology characterization, in situ swelling analysis, and finite element simulation, it is found that the TA-c-PAA binder allows the Si anode to dissipate stress and prevent pulverization during lithiation and delithiation, thus the hydrogen bonds among interpenetrating network may be adaptable to the stress intensity. Our work paves a new avenue for the design of efficient and cost-effective binders for next-generation Si anode in LIBs.

4.
Small ; 19(48): e2304200, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37525334

ABSTRACT

Molybdenum selenium (MoSe2 ) has tremendous potential in potassium-ion batteries (PIBs) due to its large interlayer distance, favorable bandgap, and high theoretical specific capacity. However, the poor conductivity and large K+ insertion/extraction in MoSe2 inevitably leads to sluggish reaction kinetics and poor structural stability. Herein, Coinduced engineering is employed to illuminate high-conductivity electron pathway and mobile ion diffusion of MoSe2 nanosheets anchored on reduced graphene oxide substrate (Co-MoSe2 /rGO). Benefiting from the activated electronic conductivity and ion diffusion kinetics, and an expanded interlayer spacing resulting from Co doping, combined with the interface coupling with highly conductive reduced graphene oxide (rGO) substrate through Mo-C bonding, the Co-MoSe2 /rGO anode demonstrates remarkable reversible capacity, superior rate capability, and stable long-term cyclability for potassium storage, as well as superior energy density and high power density for potassium-ion capacitors. Systematic performance measurement, dynamic analysis, in-situ/ex-situ measurements, and density functional theory (DFT) calculations elucidate the performance-enhancing mechanism of Co-MoSe2 /rGO in view of the electronic and ionic transport kinetics. This work offers deep atomic insights into the fundamental factors of electrodes for potassium-ion batteries/capacitors with superior electrochemical performance.

5.
ACS Nano ; 17(13): 12483-12498, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37326660

ABSTRACT

Ternary metal sulfides (TMSs), endowed with the synergistic effect of their respective binary counterparts, hold great promise as anode candidates for boosting sodium storage performance. Their fundamental sodium storage mechanisms associated with dynamic structural evolution and reaction kinetics, however, have not been fully comprehended. To enhance the electrochemical performance of TMS anodes in sodium-ion batteries (SIBs), it is of critical importance to gain a better mechanistic understanding of their dynamic electrochemical processes during live (de)sodiation cycling. Herein, taking BiSbS3 anode as a representative paradigm, its real-time sodium storage mechanisms down to the atomic scale during the (de)sodiation cycling are systematically elucidated through in situ transmission electron microscopy. Previously unexplored multiple phase transformations involving intercalation, two-step conversion, and two-step alloying reactions are explicitly revealed during sodiation, in which newly formed Na2BiSbS4 and Na2BiSb are respectively identified as intermediate phases of the conversion and alloying reactions. Impressively, the final sodiation products of Na6BiSb and Na2S can recover to the original BiSbS3 phase upon desodiation, and afterward, a reversible phase transformation can be established between BiSbS3 and Na6BiSb, where the BiSb as an individual phase (rather than respective Bi and Sb phases) participates in reactions. These findings are further verified by operando X-ray diffraction, density functional theory calculations, and electrochemical tests. Our work provides valuable insights into the mechanistic understanding of sodium storage mechanisms in TMS anodes and important implications for their performance optimization toward high-performance SIBs.

6.
J Colloid Interface Sci ; 649: 203-213, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37348340

ABSTRACT

Dual-carbon engineering combines the advantages of graphite and hard carbon, thereby optimizing the potassium storage performance of carbon materials. However, dual-carbon engineering faces challenges balancing specific capacity, capability, and stability. In this study, we present a coordination engineering of Zn-N4 moieties on dual-carbon through additional P doping, which effectively modulates the symmetric charge distribution around the Zn center. Experimental results and theoretical calculations unveil that additional P doping induces an optimized electronic structure of the Zn-N4 moieties, thus enhancing K+ adsorption. A single-atom Zn metal coordinated with nitrogen and phosphorus reduces the K+ diffusion barrier and improves fast K+ migration kinetics. Consequently, Zn-NPC@rGO exhibits high reversible specific capacities, excellent rate capability, and impressive cycling stability, and remarkable power and energy densities for potassium-ion capacitors (PICs). This study provides insights into crucial factors for enhancing potassium storage performance.

7.
J Environ Manage ; 341: 118022, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37150166

ABSTRACT

Two novel and eco-friendly redox mediators (RMs), magnetic oxidative vanillin (MOV) and magnetic oxidative syringaldehyde (MOS), both derived from lignin, were prepared to improve the decolorization of the methyl orange (MO) dye. The Decolorization Efficiency (DE) of MO in the batch experiments with MOV and MOS were increased by more than 60% and 22%, respectively, when compared to the control experiment without magnetic RMs. Moreover, the two magnetic RMs could maintain stable DE of MO in sequenced batch reactors (SBRs), and negligible leaching of the oxidized lignin monomers was observed under various environmental conditions. Density Function Theory (DFT) calculations were used to propose three potential biodegradation mechanisms for azo dyes, and the key intermediates were confirmed using high-performance liquid chromatography. This study proposed a feasible strategy for functional utilization of lignin resource, as well as a practical method for effectively treating azo dye-containing wastewater.


Subject(s)
Coloring Agents , Lignin , Coloring Agents/chemistry , Electrons , Azo Compounds/chemistry , Biodegradation, Environmental , Acceleration
8.
Adv Mater ; 35(19): e2205751, 2023 May.
Article in English | MEDLINE | ID: mdl-36921344

ABSTRACT

Configurational entropy-stabilized single-phase high-entropy oxides (HEOs) have been considered revolutionary electrode materials with both reversible lithium storage and high specific capacity that are difficult to fulfill simultaneously by conventional electrodes. However, precise understanding of lithium storage mechanisms in such HEOs remains controversial due to complex multi-cationic oxide systems. Here, distinct reaction dynamics and structural evolutions in rocksalt-type HEOs upon cycling are carefully studied by in situ transmission electron microscopy (TEM) including imaging, electron diffraction, and electron energy loss spectroscopy at atomic scale. The mechanisms of composition-dependent conversion/alloying reaction kinetics along with spatiotemporal variations of valence states upon lithiation are revealed, characterized by disappearance of the original rocksalt phase. Unexpectedly, it is found from the first visualization evidence that the post-lithiation polyphase state can be recovered to the original rocksalt-structured HEOs via reversible and symmetrical delithiation reactions, which is unavailable for monometallic oxide systems. Rigorous electrochemical tests coupled with postmortem ex situ TEM and bulk-level phase analyses further validate the crucial role of structural recovery capability in ensuring the reversible high-capacity Li-storage in HEOs. These findings can provide valuable guidelines to design compositionally engineer HEOs for almighty electrodes of next-generation long-life energy storage devices.

9.
Int J Biol Macromol ; 221: 994-1001, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36113596

ABSTRACT

Herein, an indole-derived water-soluble fluorescence nanomaterial and biomass-based cellulose filter paper integrated as solid-state fluorescence platform (H2-FP) for seafood spoilage detection was prepared. H2 exhibits high fluorescence stability and good biocompatibility with green beans, onion tissues, blood and zebrafish, which proving that H2 has a wide range of application scenarios. Further, H2-FP with effective, solid-state fluorescence, portable, and reusable characteristics is nanoengineered for NH3 quantitative and qualitative detection (DOL = 2.6 ppm). Then, H2-FP has been successfully used to monitor NH3 release in the seafood spoilage process at various storage time (4 °C and 25 °C). More importantly, fluorescence color of H2-FP is integrated smartphone are converted to digital values through RGB channels and successfully used to visualize semi-quantitative recognition of NH3. This sensing fluorescence platform integrated with smartphone furnishes an effective fabrication strategy and broad prospects for explore various biomass-based materials for sensing NH3 change in biological and environmental samples.


Subject(s)
Cellulose , Zebrafish , Animals , Biomass , Seafood/analysis , Indoles
10.
Polymers (Basel) ; 13(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072938

ABSTRACT

The surface modification technology of carbon fibers (CFs) have achieved considerable development, and it has achieved great success in improving the interfacial shear strength (IFSS) of the polymer matrix. Among them, MXene (Ti3C2Tx) functionalized CFs have been proven to improve the interface performance significantly. Unfortunately, the results on the microscopic scale are rarely applied to the preparation of macroscopic composite materials. Herein, the process of MXene functionalized CFs were attempted to be extended to short carbon fibers (SCFs) and used to strengthen epoxy materials. The results show that the cross-scale reinforcement of MXene functionalized SCFs can be firmly bonded to the epoxy matrix, which significantly improves the mechanical properties. Compared to neat epoxy, the tensile strength (141.2 ± 2.3 MPa), flexural strength (199.3 ± 8.9 MPa) and critical stress intensity factor (KIC, 2.34 ± 0.04 MPa·m1/2) are increased by 100%, 67%, and 216%, respectively.

11.
Research (Wash D C) ; 2021: 9760729, 2021.
Article in English | MEDLINE | ID: mdl-38617378

ABSTRACT

Organic-inorganic hybrid perovskites (OIHPs) have proven to be promising active layers for nonvolatile memories because of their rich abundance in earth, mobile ions, and adjustable dimensions. However, there is a lack of investigation on controllable fabrication and storage properties of one-dimensional (1D) OIHPs. Here, the growth of 1D (NH=CINH3)3PbI5 ((IFA)3PbI5) perovskite and related resistive memory properties are reported. The solution-processed 1D (IFA)3PbI5 crystals are of well-defined monoclinic crystal phase and needle-like shape with the length of about 6 mm. They exhibit a wide bandgap of 3 eV and a high decomposition temperature of 206°C. Moreover, the (IFA)3PbI5 films with good uniformity and crystallization were obtained using a dual solvent of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). To study the intrinsic electric properties of this anisotropic material, we constructed the simplest memory cell composed of only Au/(IFA)3PbI5/ITO, contributing to a high-compacted device with a crossbar array device configuration. The resistive random access memory (ReRAM) devices exhibit bipolar current-voltage (I-V) hysteresis characteristics, showing a record-low power consumption of ~0.2 mW among all OIHP-based memristors. Moreover, our devices own the lowest power consumption and "set" voltage (0.2 V) among the simplest perovskite-based memory devices (inorganic ones are also included), which are no need to require double metal electrodes or any additional insulating layer. They also demonstrate repeatable resistance switching behaviour and excellent retention time. We envision that 1D OIHPs can enrich the low-dimensional hybrid perovskite library and bring new functions to low-power information devices in the fields of memory and other electronics applications.

12.
Dalton Trans ; 49(40): 14115-14122, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33016300

ABSTRACT

Cobalt sulfide (Co4S3) is considered one of the most promising anode materials for lithium-ion batteries owing to its high specific capacity. However, some disadvantages, such as poor electrical conductivity and volume expansion, lead to low rate capability and may hinder its practical applications. Herein, we firstly fabricated leaf-like hollow Co4S3/C nanosheet arrays growing on carbon cloth (h-Co4S3/C NA@CC) by a facile solution method combined with carbonization, sulfidation and annealing treatments. The carbon coated leaf-like nanosheet structure can facilitate the electron transfer and shorten the ion transfer path, while the hollow space inside Co4S3 can buffer the volume variation. As the anode for LIBs, h-Co4S3/C NA@CC demonstrates an impressive rate capability (654.3 mA h g-1 at 1 A g-1 and 394.1 mA h g-1 at 2 A g-1), and an excellent cycling stability (720 mA h g-1 at 1 A g-1 after 200 cycles and 79% capacity retention at 2 A g-1 after 500 cycles).

13.
RSC Adv ; 10(59): 35636-35645, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-35517060

ABSTRACT

An entirely bio-degradable adsorbent based on lignin was synthesized by a crosslinking method and the adsorption of methyl blue (MB) and Pb(ii) onto the adsorbent were comparatively investigated, with adsorption behavior and mechanism of the two pollutants on the adsorbent (SLS) being assessed in single and binary systems. According to the results, SLS was capable of effective adsorption using MB and Pb(ii). The adsorption behavior of MB and Pb(ii) followed Langmuir and pseudo-first order models and showed temperature-dependent preferences. At 298 K MB was more preferred while at 318 K Pb(ii) adsorption was more favorable, which means that the selectivity of SLS can be tuned by changing the temperature. From a mechanism aspect, the adsorption of MB and Pb(ii) were both achieved through more than one route. Pb(ii) mainly interacts with sulfonate and hydroxyl groups on SLS, while MB can be bound on both anionic and aromatic groups due to its aromatic nature. Recycling and reuse experiments showed that used SLS can be readily reactivated and stably reused. The findings will guide adsorbent applications in wastewater containing heavy metals and aromatic compounds.

14.
Int J Biol Macromol ; 146: 453-461, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31874271

ABSTRACT

Herein, chitosan-based hydrogel beads (CHBs) were used to prepare N- and O-enriched hierarchical porous carbon (PC) by microwave heating for only 10 min. Water molecules in CHBs can act as heating carriers, and the resulting steam not only squeeze out air to create an oxygen-free atmosphere but act as physical activating agent to generate pores. Furthermore, the increased temperature contributed to form chitosan-based char, which, in turn, facilitated microwave absorption to further increase temperature. Considering that KOH as gelling agent of CHBs can also generate pores, the effect of KOH concentration on physicochemical properties of PCs was investigated in detail. Significantly, appropriately higher KOH concentration (3-7%) would cause fiercer reactions to achieve more developed porous structure, while excessive KOH concentration (10%) led to over-etching phenomenon and limited the further development on porous structure. The obtained PCs exhibited large specific surface area up to 1743 m2 g-1 and O, N-enriched structure (O: 25.1%, N: 4.9%). Particularly, the optimized PC-based electrode prepared by using 7% KOH solution showed remarkably high rate capability (89%). This work provides a one-step and cost-effective method to prepare a promising electrode material for high-rate supercapacitors.


Subject(s)
Carbon/chemistry , Chitosan/chemistry , Electric Capacitance , Hydrogels/chemistry , Electrochemistry , Microspheres , Photoelectron Spectroscopy , Porosity , Spectrum Analysis, Raman , Thermogravimetry , X-Ray Diffraction
15.
ChemSusChem ; 11(21): 3714-3718, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30188012

ABSTRACT

An energy-efficient method has been developed to prepare 3-5 nm-wide carboxyl-functionalized cellulose nanofibers (CNFs) from pulp fiber by a simple one-pot swelling followed by esterification process. Tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) binary solvent is used as the swelling agent and the esterification medium admixed with maleic anhydride. All steps are performed at room temperature and no post-mechanical treatment is needed. The highly efficient defibrillation of pulp fiber to CNFs is thought to be due to two factors: 1) swelling in TBAA/DMSO effectively loosens the structure of cellulose supermolecules by breaking the intra- and intermolecular hydrogen bonds between cellulose chains; and 2) the carboxyl groups grafted onto the cellulose molecules by esterification prohibit the reformulation of hydrogen bonds between cellulose chains and therefore stabilize the disperse CNFs with uniform diameter in solution. Other than acid anhydride, no catalyst is added for the esterification, which facilitates the recycling and reuse of the binary solvent. This energy-efficient one-pot method could facilitate the large-scale manufacture of bio-based nanomaterials.

16.
Carbohydr Polym ; 145: 114-20, 2016 07 10.
Article in English | MEDLINE | ID: mdl-27106158

ABSTRACT

Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Antifungal Agents/administration & dosage , Cellulose/administration & dosage , Drug Delivery Systems , Tetracycline/administration & dosage , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Bacteria/metabolism , Candida albicans/drug effects , Cell Survival/drug effects , Cellulose/chemistry , Cellulose/metabolism , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Drug Liberation , HEK293 Cells , Humans , Membranes, Artificial , Tetracycline/chemistry , Wound Healing
17.
Carbohydr Polym ; 138: 166-71, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26794749

ABSTRACT

Graphene has been considered to be a promising nanofiller material for building polymeric nanocomposites because it has large specific surface area and unique mechanical property. In the study, BC/graphene composites were prepared by a simple blending method. The resulting structure and thermal stability of the composites were investigated by several techniques including TEM, SEM, XRD, TG and Raman spectrum. These results indicate graphene nanosheets were successfully impregnated and uniformly dispersed in the BC matrix. Water contact angles result showed that the addition of graphene decreased hydrophilic property since water contact angle of BC increased from 51.2° to 84.3° with 4wt% graphene added. The mechanical performances of BC/graphene composites were highly evaluated. When compared to pristine BC, the incorporation of 4wt% graphene improved the tensile strength from 96MPa to 155MPa and Young's modulus from 369MPa to 530MPa, respectively.


Subject(s)
Bacteria/metabolism , Cellulose/chemistry , Graphite/chemistry , Nanocomposites/chemistry , Elastic Modulus , Microscopy, Electron, Scanning , Spectrum Analysis, Raman , Surface Properties , Tensile Strength , Thermogravimetry , Water/chemistry
18.
Carbohydr Polym ; 132: 351-8, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26256359

ABSTRACT

Sodium alginate (SA) and bacterial cellulose (BC) are widely used in many applications such as scaffolds and wound dressings due to its biocompatibility. Silver sulfadiazine (AgSD) is a topical antibacterial agents used as a topical cream on burns. In the study, novel BC/SA-AgSD composites were prepared and characterized by SEM, FTIR and TG analyses. These results indicate AgSD successfully impregnated into BC/SA matrix. The swelling behaviors in different pH were studied and the results showed pH-responsive swelling behaviors. The antibacterial performances of BC/SA-AgSD composites were evaluated with Escherichia coli, Staphylococcus aureus and Candida albicans. Moreover, the cytotoxicity of BC/SA-AgSD composites was performed on HEK 293 cells. The experimental results showed BC/SA-AgSD composites have excellent antibacterial activities and good biocompatibility, thus confirming its utility as potential wound dressings.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents/chemistry , Cellulose/chemistry , Silver Sulfadiazine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Candida albicans/drug effects , Cell Survival/drug effects , Drug Compounding , Escherichia coli/drug effects , Glucuronic Acid/chemistry , HEK293 Cells , Hexuronic Acids/chemistry , Humans , Porosity , Silver Sulfadiazine/pharmacology , Silver Sulfadiazine/toxicity , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Temperature
19.
ACS Appl Mater Interfaces ; 7(12): 6966-73, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25762191

ABSTRACT

In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Carriers/chemistry , Graphite/pharmacology , Nanocomposites/toxicity , Oxides/pharmacology , Silver/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Graphite/chemistry , HEK293 Cells , Humans , Nanocomposites/chemistry , Oxides/chemistry , Silver/chemistry , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...