Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 39(50): 10081-10095, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31672788

ABSTRACT

Neurovascular coupling (NVC), the interaction between neural activity and vascular response, ensures normal brain function by maintaining brain homeostasis. We previously reported altered cerebrovascular responses during functional hyperemia in chronically stressed animals. However, the underlying neuronal-level changes associated with those hemodynamic changes remained unclear. Here, using in vivo and ex vivo experiments, we investigate the neuronal origins of altered NVC dynamics under chronic stress conditions in adult male mice. Stimulus-evoked hemodynamic and neural responses, especially beta and gamma-band local field potential activity, were significantly lower in chronically stressed animals, and the NVC relationship, itself, had changed. Further, using acute brain slices, we discovered that the underlying cause of this change was dysfunction of neuronal nitric oxide synthase (nNOS)-mediated vascular responses. Using FISH to check the mRNA expression of several GABAergic subtypes, we confirmed that only nNOS mRNA was significantly decreased in chronically stressed mice. Ultimately, chronic stress impairs NVC by diminishing nNOS-mediated vasodilation responses to local neural activity. Overall, these findings provide useful information in understanding NVC dynamics in the healthy brain. More importantly, this study reveals that impaired nNOS-mediated NVC function may be a contributory factor in the progression of stress-related diseases.SIGNIFICANCE STATEMENT The correlation between neuronal activity and cerebral vascular dynamics is defined as neurovascular coupling (NVC), which plays an important role for meeting the metabolic demands of the brain. However, the impact of chronic stress, which is a contributory factor of many cerebrovascular diseases, on NVC is poorly understood. We therefore investigated the effects of chronic stress on impaired neurovascular response to sensory stimulation and their underlying mechanisms. Multimodal approaches, from in vivo hemodynamic imaging and electrophysiology to ex vivo vascular imaging with pharmacological treatment, patch-clamp recording, FISH, and immunohistochemistry revealed that chronic stress-induced dysfunction of nNOS-expressing interneurons contributes to NVC impairment. These findings will provide useful information to understand the role of nNOS interneurons in NVC in normal and pathological conditions.


Subject(s)
Cerebrovascular Circulation/physiology , GABAergic Neurons/physiology , Interneurons/physiology , Neurovascular Coupling/physiology , Stress, Physiological/physiology , Action Potentials/physiology , Animals , Brain/physiology , Male , Mice , Nitric Oxide Synthase Type I/metabolism , Vasodilation/physiology
2.
Sci Rep ; 8(1): 13064, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166586

ABSTRACT

Chronic stress disrupts brain homeostasis and adversely affects the cerebro-vascular system. Even though the effects of chronic stress on brain system have been extensively studied, there are few in vivo dynamic studies on the effects of chronic stress on the cerebro-vascular system. In this study, the effects of chronic stress on cerebral vasculature and BBB permeability were studied using in vivo two-photon (2p) microscopic imaging with an injection of fluorescence-conjugated dextran. Our real-time 2p imaging results showed that chronic stress reduced the vessel diameter and reconstructed vascular volume, regardless of vessel type and branching order. BBB permeability was investigated with two different size of tracers. Stressed animals exhibited a greater BBB permeability to 40-kDa dextran, but not to 70-kDa dextran, which is suggestive of weakened vascular integrity following stress. Molecular analysis revealed significantly higher VEGFa mRNA expression and a reduction in claudin-5. In summary, chronic stress decreases the size of cerebral vessels and increases BBB permeability. These results may suggest that the sustained decrease in cerebro-vascular volume due to chronic stress leads to a hypoxic condition that causes molecular changes such as VEGF and claudin-5, which eventually impairs the function of BBB.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Photons , Stress, Psychological/diagnostic imaging , Stress, Psychological/pathology , Animals , Behavior, Animal , Blood Pressure , Body Weight , Chronic Disease , Corticosterone/blood , Disease Models, Animal , Gene Expression Regulation , Hypoxia/genetics , Male , Mice , Organ Size , Permeability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Restraint, Physical , Stress, Psychological/blood , Stress, Psychological/genetics
3.
Acta Biomater ; 79: 294-305, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30134209

ABSTRACT

Since delivering drugs to an entire tumoral region leads to high therapeutic efficacy and good prognosis, achieving deep tumoral penetration of drugs is a major issue in cancer treatment. In this regard, conventional nanomedicines (>50 nm) have shown limitations in cancer therapy, primarily attributed to the heterogeneous distribution of drugs because of the physiological barrier of the tumor interstitial space. To address this issue, we prepared transformable hybrid nanoparticles (TNPs) consisting of a pH-responsive nanocarrier (PEG-PBAE) and doxorubicin (DOX)-conjugated ultrasmall (<3 nm) gold nanoparticles (nanosatellites). It has been shown that PEG-PBAE can serve as a reservoir for nanosatellites and release them in mildly acidic conditions (pH 6.5), mimicking the tumor microenvironment. When DOX-loaded TNPs (DOX-TNPs) were intravenously injected into tumor-bearing mice, they successfully accumulated and dissociated at the extracellular level of the tumor, leading to the disclosure of nanosatellites and free DOX. While the free DOX accumulated in tumor tissue near blood vessels, the deeply diffused nanosatellites were taken up by the tumor cell, followed by the release of DOX via cleavage of pH-responsive ester linkages in the nanosatellites at the intracellular level. Consequently, the DOX-TNPs effectively suppressed tumor growth through improved tumor penetration of DOX, suggesting their promising potential as a cancer nanomedicine. STATEMENT OF SIGNIFICANCE: Deep tumor penetration of anticancer drug is an important issue for high therapeutic efficacy. If the drugs cannot reach cancer cells in a sufficient concentration, their effectiveness will be limited. In this regard, conventional nanomedicine showed only modest therapeutic efficacy since they cannot deliver their payloads to the deep site of tumor tissue. This heterogeneous distribution of the drug is primarily attributed to the physiological barriers of the tumor microenvironment, including a dense extracellular matrix. To surmount this challenge, we developed tumor acidity-triggered transformable nanoparticles. By encapsulating doxorubicin-conjugated ultrasmall gold nanosatellites into the nanoparticles, the drug was not significantly bound to genetic materials, resulting in its minimal sequestration near the vasculature and deep tumor penetration. Our strategy could resolve not only the poor penetration issue of the drug but also its restricted tumor accumulation, suggesting the potential as an effective nanotherapeutics.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Neoplasms/metabolism , Animals , Cell Death/drug effects , Doxorubicin/pharmacology , Drug Liberation , HCT116 Cells , Humans , Metal Nanoparticles/toxicity , Mice , Mice, Inbred BALB C , Mice, Nude , NIH 3T3 Cells , Neoplasms/pathology , Particle Size , Tissue Distribution/drug effects
4.
Nano Lett ; 18(4): 2637-2644, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29521509

ABSTRACT

Conventional cancer targeting with nanoparticles has been based on the assumed enhanced permeability and retention (EPR) effect. The data obtained in clinical trials to date, however, have rarely supported the presence of such an effect. To address this challenge, we formulated intracellular nitric oxide-generating nanoparticles (NO-NPs) for the tumor site-specific delivery of NO, a well-known vasodilator, with the intention of boosting EPR. These nanoparticles are self-assembled under aqueous conditions from amphiphilic copolymers of poly(ethylene glycol) and nitrated dextran, which possesses inherent NO release properties in the reductive environment of cancer cells. After systemic administration of the NO-NPs, we quantitatively assessed and visualized increased tumor blood flow as well as enhanced vascular permeability than could be achieved without NO. Additionally, we prepared doxorubicin (DOX)-encapsulated NO-NPs and demonstrated consequential improvement in therapeutic efficacy over the control groups with considerably improved DOX intratumoral accumulation. Overall, this proof of concept study implies a high potency of the NO-NPs as an EPR enhancer to achieve better clinical outcomes.

5.
J Control Release ; 267: 223-231, 2017 Dec 10.
Article in English | MEDLINE | ID: mdl-28917532

ABSTRACT

In cancer theranostics, the main strategy of nanoparticle-based targeted delivery system has been understood by enhanced permeability and retention (EPR) effect of macromolecules. Studies on diverse nanoparticles provide a better understanding of different EPR effects depending on their structure, physicochemical properties, and chemical modifications. Recently the tumor microenvironment has been considered as another important factor for determining tumor-targeted delivery of nanoparticles, but the correlation between EPR effects and tumor microenvironment has not yet been fully elucidated. Herein, ectopic subcutaneous tumor models presenting different tumor microenvironments were established by inoculation of SCC7, U87, HT29, PC3, and A549 cancer cell lines into athymic nude mice, respectively. In the five different types of tumor-bearing mice, tumor-targeted delivery of self-assembled glycol chitosan nanoparticles (CNPs) were comparatively evaluated to identify the correlation between the tumor microenvironments and targeted delivery of CNPs. As a result, neovascularization and extents of intratumoral extracellular matrix (ECM) were both important in determining the tumor targeted delivery of CNPs. The EPR effect was maximized in the tumors which include large extent of angiogenic blood vessels and low intratumoral ECM content. This comprehensive study provides substantial evidence that the EPR effects based tumor-targeted delivery of nanoparticles can be different depending on the tumor microenvironment in individual tumors. To overcome current limitations in clinical nanomedicine, the tumor microenvironment of the patients and EPR effects in clinical tumors should also be carefully studied.


Subject(s)
Chitosan/administration & dosage , Drug Delivery Systems , Nanoparticles/administration & dosage , Neoplasms/metabolism , Tumor Microenvironment , Animals , Cell Line, Tumor , Chitosan/chemistry , Chitosan/pharmacokinetics , Extracellular Matrix , Female , Humans , Mice, Nude , Microvessels/drug effects , Nanoparticles/chemistry , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Tissue Distribution , Tumor Burden/drug effects
6.
Front Neurosci ; 9: 462, 2015.
Article in English | MEDLINE | ID: mdl-26778944

ABSTRACT

Repeated stress is one of the major risk factors for cerebrovascular disease, including stroke, and vascular dementia. However, the functional alterations in the cerebral hemodynamic response induced by chronic stress have not been clarified. Here, we investigated the in vivo cerebral hemodynamic changes and accompanying cellular and molecular changes in chronically stressed rats. After 3 weeks of restraint stress, the elicitation of stress was verified by behavioral despair in the forced swimming test and by physical indicators of stress. The evoked changes in the cerebral blood volume and pial artery responses following hindpaw electrical stimulation were measured using optical intrinsic signal imaging. We observed that, compared to the control group, animals under chronic restraint stress exhibited a decreased hemodynamic response, with a smaller pial arterial dilation in the somatosensory cortex during hindpaw electrical stimulation. The effect of chronic restraint stress on vasomodulator enzymes, including neuronal nitric oxide synthase (nNOS) and heme oxygenase-2 (HO-2), was assessed in the somatosensory cortex. Chronic restraint stress downregulated nNOS and HO-2 compared to the control group. In addition, we examined the subtypes of cells that can explain the environmental changes due to the decreased vasomodulators. The expression of parvalbumin in GABAergic interneurons and glutamate receptor-1 in neurons were decreased, whereas the microglial activation was increased. Our results suggest that the chronic stress-induced alterations in cerebral vascular function and the modulations of the cellular expression in the neuro-vasomodulatory system may be crucial contributing factors in the development of various vascular-induced conditions in the brain.

SELECTION OF CITATIONS
SEARCH DETAIL
...