Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38534858

ABSTRACT

The metastable vaterite polymorph of calcium carbonate (CaCO3) holds significant practical importance, particularly in regenerative medicine, drug delivery, and various personal care products. Controlling the size and morphology of vaterite particles is crucial for biomedical applications. This study explored the synergistic effect of ultrasonic (US) irradiation and acidic amino acids on CaCO3 synthesis, specifically the size, dispersity, and crystallographic phase of curved-edge vaterite with chiral toroids (chiral-curved vaterite). We employed 40 kHz US irradiation and introduced L- or D-aspartic acid as an additive for the formation of spheroidal chiral-curved vaterite in an aqueous solution of CaCl2 and Na2CO3 at 20 ± 1 °C. Chiral-curved vaterites precipitated through mechanical stirring (without US irradiation) exhibited a particle size of approximately 15 µm, whereas those formed under US irradiation were approximately 6 µm in size and retained their chiral topoid morphology. When a fluorescent dye was used for the analysis of loading efficiency, the size-reduced vaterites with chiral morphology, produced through US irradiation, exhibited a larger loading efficiency than the vaterites produced without US irradiation. These results hold significant value for the preparation of biomimetic chiral-curved CaCO3, specifically size-reduced vaterites, as versatile biomaterials for material filling, drug delivery, and bone regeneration.

2.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396701

ABSTRACT

Diatom biosilica is an important natural source of porous silica, with three-dimensional ordered and nanopatterned structures referred to as frustules. The unique features of diatom frustules, such as their high specific surface area, thermal stability, biocompatibility, and adaptable surface chemistry, render diatoms valuable materials for high value-added applications. These attributes make diatoms an exceptional cost-effective raw material for industrial use. The functionalization of diatom biosilica surface improves its biophysical properties and increases the potential applications. This review focuses on the potential uses of diatom biosilica including traditional approaches and recent progress in biomedical applications. Not only well-studied drug delivery systems but also promising uses on bone regeneration and wound healing are covered. Furthermore, considerable aspects and possible future directions for the use of diatom biosilica materials are proposed to develop biomedical applications and merit further exploration.


Subject(s)
Diatoms , Diatoms/chemistry , Biomimetics , Drug Delivery Systems/methods , Silicon Dioxide/chemistry , Porosity
3.
Int J Biol Macromol ; 254(Pt 2): 127876, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37926322

ABSTRACT

The clinical utility of bone morphogenetic protein 2 (BMP2) is limited because of the poor attraction between BMP2 and carriers, resulting in low loading efficiency and initial burst release. Here, the high binding affinity of BMP2 to the biosilica surface was utilized to overcome this limitation. Atomic force microscopy revealed that BMP2 bound nearly 8- and 2-fold more strongly to biosilica-coated hydroxyapatite than to uncoated and plain silica-coated hydroxyapatite, respectively. To achieve controlled release, collagen was introduced between the silica layers on hydroxyapatite, which was optimized by adjusting the collagen concentration and number of layers. The optimal biosilica/collagen formulation induced sustained BMP2 release without compromising loading efficiency. BMP2 combined with the mentioned formulation led to an increase in osteogenesis, as compared to the combination of BMP2 with either biosilica-coated or non-coated hydroxyapatite in vitro. In rat calvarial defect models, the biosilica/collagen-coated hydroxyapatite with 1 µg BMP2 showed 26 % more bone regeneration than the same dose of BMP2-loaded hydroxyapatite and 10.6 % more than hydroxyapatite with 2.5-fold dose of BMP2. Using BMP2 affinity carriers coated with biosilica/collagen allows for more efficacious in situ loading and delivery of BMP2, making them suitable for the clinical application of growth factors through a soaking method.


Subject(s)
Bone Morphogenetic Protein 2 , Osteogenesis , Rats , Animals , Bone Morphogenetic Protein 2/pharmacology , Bone Morphogenetic Protein 2/metabolism , Bone Regeneration , Durapatite , Collagen , Silicon Dioxide , Tissue Scaffolds
4.
Antioxidants (Basel) ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37237914

ABSTRACT

Polyphenols from plants such as fruits and vegetables are phytochemicals with physiological and pharmacological activity as potential drugs to modulate oxidative stress and inflammation associated with cardiovascular disease, chronic disease, and cancer. However, due to the limited water solubility and bioavailability of many natural compounds, their pharmacological applications have been limited. Researchers have made progress in the development of nano- and micro-carriers that can address these issues and facilitate effective drug delivery. The currently developed drug delivery systems maximize the fundamental effects in various aspects such as absorption rate, stability, cellular absorption, and bioactivity of polyphenols. This review focuses on the antioxidant and anti-inflammatory effects of polyphenols enhanced by the introduction of drug delivery systems, and ultimately discusses the inhibition of cancer cell proliferation, growth, and angiogenesis.

5.
Bioresour Technol ; 344(Pt B): 126404, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826566

ABSTRACT

Microalgal research has made significant progress in terms of the high-value-added industrial application of microalgal biomass and its derivatives. However, cost-effective techniques for producing, harvesting, and processing microalgal biomass on a large scale still need to be fully explored in order to optimize their performance and achieve commercial robustness. In particular, technologies for harvesting microalgae are critical in the practical process as they require excessive energy and equipment costs. This review focuses on microalgal flocculation, dewatering, and drying techniques and specifically covers the traditional approaches and recent technological progress in harvesting microalgal biomass. Several aspects, including the characteristics of the target microalgae and the type of final value-added products, must be considered when selecting the appropriate harvesting technique. Furthermore, considerable aspects and possible future directions in flocculation, dewatering, and drying steps are proposed to develop scalable and low-cost microalgal harvesting systems.


Subject(s)
Microalgae , Biofuels , Biomass , Flocculation , Technology
6.
Chemosphere ; 143: 128-34, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26206748

ABSTRACT

Carbonic anhydrase (CA) is a biocatalyst for CO2 sequestration because of its distinctive ability to accelerate CO2 hydration. High production and efficient immobilization of alkaline-active CAs are required, because one potential application of CA is its use in the alkaline solvent-based CO2 absorption/desorption process. Here, we designed and applied an α-type CA from Hahella chejuensis (HCA), which was reported as highly active in alkaline conditions, but was mostly expressed as insoluble forms. We found that the signal peptide-removed form of HCA [HCA(SP-)] was successfully expressed in the soluble form [∼70mg of purified HCA(SP-) per L of culture]. HCA(SP-) also displayed high pH stability in alkaline conditions, with maximal activity at pH 10; at this pH, ∼90% activity was maintained for 2h. Then, we prepared HCA(SP-)-encapsulated silica particles [HCA(SP-)@silica] via a spermine-mediated bio-inspired silicification method. HCA(SP-)@silica exhibited high-loading and highly stable CA activity. In addition, HCA(SP-)@silica retained more than 90% of the CA activity even after 10 cycles of use in mild conditions, and ∼80% in pH 10 conditions. These results will be useful for the development of practical CO2 sequestration processes employing CA.


Subject(s)
Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Gammaproteobacteria/enzymology , Silicon Dioxide/chemistry , Escherichia coli , Esterases/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Solubility , Solvents , Spermine/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...