Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38067818

ABSTRACT

Although several previous studies on laterality of upper limb motor control have reported functional differences, this conclusion has not been agreed upon. It may be conjectured that the inconsistent results were caused because upper limb motor control was observed in multi-joint tasks that could generate different inter-joint motor coordination for each arm. Resolving this, we employed a single wrist joint tracking task to reduce the effect of multi-joint dynamics and examined the differences between the dominant and non-dominant hands in terms of motor control. Specifically, we defined two sections to induce feedback (FB) and feedforward (FF) controls: the first section involved a visible target for FB control, and the other section involved an invisible target for FF control. We examined the differences in the position errors of the tracer and the target. Fourteen healthy participants performed the task. As a result, we found that during FB control, the dominant hand performed better than the non-dominant hand, while we did not observe significant differences in FF control. In other words, in a single-joint movement that is not under the influence of the multi-joint coordination, only FB control showed laterality and not FF control. Furthermore, we confirmed that the dominant hand outperformed the non-dominant hand in terms of responding to situations that required a change in control strategy.


Subject(s)
Psychomotor Performance , Robotic Surgical Procedures , Humans , Movement , Upper Extremity , Functional Laterality , Hand
2.
Front Comput Neurosci ; 14: 457682, 2020.
Article in English | MEDLINE | ID: mdl-33424572

ABSTRACT

Humans learn motor skills (MSs) through practice and experience and may then retain them for recruitment, which is effective as a rapid response for novel contexts. For an MS to be recruited for novel contexts, its recruitment range must be extended. In addressing this issue, we hypothesized that an MS is dynamically modulated according to the feedback context to expand its recruitment range into novel contexts, which do not involve the learning of an MS. The following two sub-issues are considered. We previously demonstrated that the learned MS could be recruited in novel contexts through its modulation, which is driven by dynamically regulating the synergistic redundancy between muscles according to the feedback context. However, this modulation is trained in the dynamics under the MS learning context. Learning an MS in a specific condition naturally causes movement deviation from the desired state when the MS is executed in a novel context. We hypothesized that this deviation can be reduced with the additional modulation of an MS, which tunes the MS-produced muscle activities by using the feedback gain signals driven by the deviation from the desired state. Based on this hypothesis, we propose a feedback gain signal-driven tuning model of a learned MS for its robust recruitment. This model is based on the neurophysiological architecture in the cortico-basal ganglia circuit, in which an MS is plausibly retained as it was learned and is then recruited by tuning its muscle control signals according to the feedback context. In this study, through computational simulation, we show that the proposed model may be used to neurophysiologically describe the recruitment of a learned MS in novel contexts.

3.
J Biomech ; 72: 125-133, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29609801

ABSTRACT

Electromyogram signal (EMG) measurement frequently experiences uncertainty attributed to issues caused by technical constraints such as cross talk and maximum voluntary contraction. Due to these problems, individual EMGs exhibit uncertainty in representing their corresponding muscle activations. To regulate this uncertainty, we proposed an EMG refinement, which refines EMGs with regulating the contribution redundancy of the signals from EMGs to approximating torques through EMG-driven torque estimation (EDTE) using the muscular skeletal forward dynamic model. To regulate this redundancy, we must consider the synergistic contribution redundancy of muscles, including "unmeasured" muscles, to approximating torques, which primarily causes redundancy of EDTE. To suppress this redundancy, we used the concept of muscle synergy, which is a key concept of analyzing the neurophysiological regulation of contribution redundancy of muscles to exerting torques. Based on this concept, we designed a muscle-synergy-based EDTE as a framework for EMG refinement, which regulates the abovementioned uncertainty of individual EMGs in consideration of unmeasured muscles. In achieving the proposed EMG refinement, the most considerable point is to suppress a large change such as overestimation attributed to enhancement of the contribution of particular muscles to estimating torques. Therefore it is reasonable to refine EMGs by minimizing the change in EMGs. To evaluate this model, we used a Bland-Altman plot, which quantitatively evaluates the proportional bias of refined signals to EMGs. Through this evaluation, we showed that the proposed EDTE minimizes the bias while approximating torques. Therefore this minimization optimally regulates the uncertainty of EMGs and thereby leads to optimal EMG refinement.


Subject(s)
Electromyography , Models, Biological , Muscle, Skeletal/physiology , Adult , Humans , Male , Muscle Contraction , Torque , Uncertainty , Young Adult
4.
Neural Comput ; 30(4): 1104-1131, 2018 04.
Article in English | MEDLINE | ID: mdl-29381443

ABSTRACT

Humans are able to robustly maintain desired motion and posture under dynamically changing circumstances, including novel conditions. To accomplish this, the brain needs to optimize the synergistic control between muscles against external dynamic factors. However, previous related studies have usually simplified the control of multiple muscles using two opposing muscles, which are minimum actuators to simulate linear feedback control. As a result, they have been unable to analyze how muscle synergy contributes to motion control robustness in a biological system. To address this issue, we considered a new muscle synergy concept used to optimize the synergy between muscle units against external dynamic conditions, including novel conditions. We propose that two main muscle control policies synergistically control muscle units to maintain the desired motion against external dynamic conditions. Our assumption is based on biological evidence regarding the control of multiple muscles via the corticospinal tract. One of the policies is the group control policy (GCP), which is used to control muscle group units classified based on functional similarities in joint control. This policy is used to effectively resist external dynamic circumstances, such as disturbances. The individual control policy (ICP) assists the GCP in precisely controlling motion by controlling individual muscle units. To validate this hypothesis, we simulated the reinforcement of the synergistic actions of the two control policies during the reinforcement learning of feedback motion control. Using this learning paradigm, the two control policies were synergistically combined to result in robust feedback control under novel transient and sustained disturbances that did not involve learning. Further, by comparing our data to experimental data generated by human subjects under the same conditions as those of the simulation, we showed that the proposed synergy concept may be used to analyze muscle synergy-driven motion control robustness in humans.

5.
Article in English | MEDLINE | ID: mdl-24110476

ABSTRACT

Muscle activity is the final signal for motion control from the brain. Based on this biological characteristic, Electromyogram (EMG) signals have been applied to various systems that interface human with external environments such as external devices. In order to use EMG signals as input control signal for this kind of system, the current EMG driven torque estimation models generally employ the mathematical model that estimates the nonlinear transformation function between the input signal and the output torque. However, these models need to estimate too many parameters and this process cause its estimation versatility in various conditions to be poor. Moreover, as these models are designed to estimate the joint torque, the input EMG signals are tuned out of consideration for the physiological synergetic contributions of multiple muscles for motion control. To overcome these problems of the current models, we proposed a new tuning model based on the synergy control mechanism between multiple muscles in the cortico-spinal tract. With this synergetic tuning model, the estimated contribution of multiple muscles for the motion control is applied to tune the EMG signals. Thus, this cortico-spinal control mechanism-based process improves the precision of torque estimation. This system is basically a forward dynamics model that transforms EMG signals into the joint torque. It should be emphasized that this forward dynamics model uses a musculo-skeletal model as a constraint. The musculo-skeletal model is designed with precise musculo-skeletal data, such as origins and insertions of individual muscles or maximum muscle force. Compared with the mathematical model, the proposed model can be a versatile model for the torque estimation in the various conditions and estimates the torque with improved accuracy. In this paper, we also show some preliminary experimental results for the discussion about the proposed model.


Subject(s)
Electromyography/methods , Models, Biological , Muscle, Skeletal/physiology , Musculoskeletal Physiological Phenomena , Humans , Torque
6.
Stapp Car Crash J ; 56: 231-68, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23625563

ABSTRACT

A few reports suggest differences in injury outcomes between cadaver tests and real-world accidents under almost similar conditions. This study hypothesized that muscle activity could primarily cause the differences, and then developed a human body finite element (FE) model with individual muscles. Each muscle was modeled as a hybrid model of bar elements with active properties and solid elements with passive properties. The model without muscle activation was firstly validated against five series of cadaver test data on impact responses in the anterior-posterior direction. The model with muscle activation levels estimated based on electromyography (EMG) data was secondly validated against four series of volunteer test data on bracing effects for stiffness and thickness of an upper arm muscle, and braced driver's responses under a static environment and a brake deceleration. A muscle controller using reinforcement learning (RL), which is a mathematical model of learning process in the basal ganglia associated with human postural controls, were newly proposed to estimate muscle activity in various occupant conditions including inattentive and attentive conditions. Control of individual muscles predicted by RL reproduced more human like head-neck motions than conventional control of two groups of agonist and antagonist muscles. The model and the controller demonstrated that head-neck motions of an occupant under an impact deceleration of frontal crash were different in between a bracing condition with maximal braking force and an occupant condition predicted by RL. The model and the controller have the potential to investigate muscular effects in various occupant conditions during frontal crashes.


Subject(s)
Accidents, Traffic , Equipment Design/methods , Finite Element Analysis , Models, Anatomic , Models, Biological , Muscle, Skeletal/physiology , Deceleration , Electromyography , Head/physiology , Humans , Male , Neck/physiology , Posture/physiology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...