Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 42(11): 113361, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37910508

ABSTRACT

Vascular endothelial growth factor receptor-2 (VEGFR2) plays a key role in maintaining vascular endothelial homeostasis. Here, we show that blood flows determine activation and inactivation of VEGFR2 through selective cysteine modifications. VEGFR2 activation is regulated by reversible oxidation at Cys1206 residue. H2O2-mediated VEGFR2 oxidation is induced by oscillatory flow in vascular endothelial cells through the induction of NADPH oxidase-4 expression. In contrast, laminar flow induces the expression of endothelial nitric oxide synthase and results in the S-nitrosylation of VEGFR2 at Cys1206, which counteracts the oxidative inactivation. The shear stress model study reveals that disturbed blood flow operated by partial ligation in the carotid arteries induces endothelial damage and intimal hyperplasia in control mice but not in knock-in mice harboring the oxidation-resistant mutant (C1206S) of VEGFR2. Thus, our findings reveal that flow-dependent redox regulation of the VEGFR2 kinase is critical for the structural and functional integrity of the arterial endothelium.


Subject(s)
Endothelial Cells , Hydrogen Peroxide , Animals , Mice , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
2.
Redox Biol ; 51: 102293, 2022 05.
Article in English | MEDLINE | ID: mdl-35316673

ABSTRACT

Mitochondria communicate with other cellular compartments via the secretion of protein factors. Here, we report an unexpected messenger role for heat shock protein 60 (HSP60) as a mitochondrial-releasing protein factor that couples stress-sensing signaling and cell survival machineries. We show that mild oxidative stress predominantly activates the p38/MK2 complex, which phosphorylates mitochondrial fission factor 1 (MFF1) at the S155 site. Such phosphorylated MFF1 leads to the oligomerization of voltage anion-selective channel 1, thereby triggering the formation of a mitochondrial membrane pore through which the matrix protein HSP60 passes. The liberated HSP60 associates with and activates the IκB kinase (IKK) complex in the cytosol, which consequently induces the NF-κB-dependent expression of survival genes in nucleus. Indeed, inhibition of the HSP60 release or HSP60-IKK interaction sensitizes the cancer cells to mild oxidative stress and regresses the tumorigenic growth of cancer cells in the mouse xenograft model. Thus, this study reveals a novel mitonuclear survival axis responding to oxidative stress.


Subject(s)
NF-kappa B , Neoplasms , Animals , Chaperonin 60/metabolism , Humans , I-kappa B Kinase/metabolism , Mice , Mitochondrial Proteins/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasms/genetics , Oxidative Stress , Signal Transduction , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Mol Cells ; 45(4): 193-201, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35289306

ABSTRACT

Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.


Subject(s)
Necroptosis , Superoxides , Apoptosis , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Superoxides/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL