Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Bull ; 49(3): 551-558, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36857101

ABSTRACT

BACKGROUND AND HYPOTHESIS: Viral infections are increasingly recognized in the etiology of psychiatric disorders based on epidemiological and serological studies. Few studies have analyzed viruses directly within the brain and no comprehensive investigation of viral infection within diseased brains has been completed. This study aims to determine whether viral infection in brain tissues is a risk factor for 3 major psychiatric disorders, including schizophrenia, bipolar disorder, and autism spectrum disorder. STUDY DESIGN: This study directly evaluated the presence of viral DNA or RNA in 1569 brains of patients and controls using whole-genome sequencing and RNA sequencing data with 4 independent cohorts. The PathSeq tool was used to identify known human viruses in the genome and transcriptome of patients and controls. STUDY RESULTS: A variety of DNA and RNA viruses related to the central nervous system were detected in the brains of patients with major psychiatric disorders, including viruses belonging to Herpesviridae, Polyomaviridae, Retroviridae, Flaviviridae, Parvoviridae, and Adenoviridae. However, no consistent significant differences were found between patients and controls in terms of types and amount of virus detected at both DNA and RNA levels. CONCLUSIONS: The findings of this study do not suggest an association between viral infection in postmortem brains and major psychiatric disorders.


Subject(s)
Autism Spectrum Disorder , Bipolar Disorder , Nucleic Acids , Schizophrenia , Viruses , Humans , Bipolar Disorder/genetics , Schizophrenia/genetics , Autism Spectrum Disorder/genetics , Brain , RNA , DNA , Viruses/genetics
2.
Neurobiol Aging ; 123: 222-232, 2023 03.
Article in English | MEDLINE | ID: mdl-36599749

ABSTRACT

Accumulation of somatic mutations in human neurons is associated with aging and neurodegeneration. To shed light on the somatic mutational burden in Alzheimer's disease (AD) neurons and get more insight into the role of somatic mutations in AD pathogenesis, we performed single-neuron whole genome sequencing to detect genome-wide somatic mutations (single nucleotide variants (SNVs) and Indels) in 96 single prefrontal cortex neurons from 8 AD patients and 8 elderly controls. We found that the mutational burden is ∼3000 somatic mutations per neuron genome in elderly subjects. AD patients have increased somatic mutation burden in AD-related annotation categories, including AD risk genes and differentially expressed genes in AD neurons. Mutational signature analysis showed somatic SNVs (sSNVs) primarily caused by aging and oxidative DNA damage processes but no significant difference was detected between AD and controls. Additionally, functional somatic mutations identified in AD patients showed significant enrichment in several AD-related pathways, including AD pathway, Notch-signaling pathway and Calcium-signaling pathway. These findings provide genetic insights into how somatic mutations may alter the function of single neurons and exert their potential roles in the pathogenesis of AD.


Subject(s)
Alzheimer Disease , Humans , Aged , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Whole Genome Sequencing , Aging/genetics , Neurons/metabolism , INDEL Mutation , Mutation/genetics , Polymorphism, Single Nucleotide/genetics
3.
Hum Mol Genet ; 31(20): 3494-3503, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35661211

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder, and aging and genetic and environmental exposure can contribute to its pathogenesis. DNA methylation has been suggested to play a pivotal role in neurodevelopment and neurodegenerative diseases. 5-hydroxymethylcytosine (5hmC) is generated through 5-methylcytosine (5mC) oxidization by ten-eleven translocation proteins and is particularly enriched in the brain. Although 5hmC has been linked to multiple neurological disorders, little is known about 5hmC alterations in the substantia nigra of patients with PD. To determine the specific alterations in DNA methylation and hydroxymethylation in PD brain samples, we examined the genome-wide profiles of 5mC and 5hmC in the substantia nigra of patients with PD and Alzheimer's disease (ad). We identified 4119 differentially hydroxymethylated regions (DhMRs) and no differentially methylated regions (DMRs) in the postmortem brains of patients with PD compared with those of controls. These DhMRs were PD-specific when compared with the results of AD. Gene ontology analysis revealed that several signaling pathways, such as neurogenesis and neuronal differentiation, were significantly enriched in PD DhMRs. KEGG enrichment analysis revealed substantial alterations in multiple signaling pathways, including phospholipase D (PLD), cAMP and Rap1. In addition, using a PD Drosophila model, we found that one of the 5hmC-modulated genes, PLD1, modulated α-synuclein toxicity. Our analysis suggested that 5hmC may act as an independent epigenetic marker and contribute to the pathogenesis of PD.


Subject(s)
Parkinson Disease , Phospholipase D , 5-Methylcytosine/metabolism , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Parkinson Disease/genetics , Phospholipase D/genetics , Phospholipase D/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
Neurobiol Aging ; 108: 207-209, 2021 12.
Article in English | MEDLINE | ID: mdl-34392980

ABSTRACT

Somatic mutations arise randomly or are induced by environmental factors, which may increase the risk of Alzheimer's disease (AD). Identifying somatic mutations in sporadic AD (SAD) may provide new insight of the disease. To evaluate the potential contribution of somatic single nucleotide variations (SNVs), particularly that of well-known AD-candidate genes, we investigated sequencing data sets from four platforms: whole-genome sequencing (WGS), deep whole-exome sequencing (WES) on paired brain and liver samples, RNA sequencing (RNA-seq), and single-cell whole-genome sequencing (scWGS) of brain samples from 16 AD patients and 16 non-AD individuals. We found that the average number, mean variant allele fractions (VAFs) and mutational signatures of somatic SNVs have similar distributions between AD brains and non-AD brains. We did not identify any somatic SNVs within coding regions of the APP, PSEN1, PSEN2, nor in APOE. This study shows that somatic SNVs within the coding region of AD-candidate genes are unlikely to be a common causal factor for SAD.


Subject(s)
Alzheimer Disease/genetics , Genetic Association Studies/methods , Polymorphism, Single Nucleotide/genetics , Amyloid beta-Protein Precursor/genetics , Apolipoproteins E/genetics , Datasets as Topic , Female , Humans , Male , Presenilin-1/genetics , Presenilin-2/genetics , Whole Genome Sequencing/methods
5.
Mol Psychiatry ; 26(7): 3444-3460, 2021 07.
Article in English | MEDLINE | ID: mdl-32929213

ABSTRACT

Schizophrenia (SCZ) is a neuropsychiatric disorder with aberrant expression of multiple genes. However, identifying its exact causal genes remains a considerable challenge. The brain-specific transcription factor POU3F2 (POU domain, class 3, transcription factor 2) has been recognized as a risk factor for SCZ, but our understanding of its target genes and pathogenic mechanisms are still limited. Here we report that POU3F2 regulates 42 SCZ-related genes in knockdown and RNA-sequencing experiments of human neural progenitor cells (NPCs). Among those SCZ-related genes, TRIM8 (Tripartite motif containing 8) is located in SCZ-associated genetic locus and is aberrantly expressed in patients with SCZ. Luciferase reporter and electrophoretic mobility shift assays (EMSA) showed that POU3F2 induces TRIM8 expression by binding to the SCZ-associated SNP (single nucleotide polymorphism) rs5011218, which affects POU3F2-binding efficiency at the promoter region of TRIM8. We investigated the cellular functions of POU3F2 and TRIM8 as they co-regulate several pathways related to neural development and synaptic function. Knocking down either POU3F2 or TRIM8 promoted the proliferation of NPCs, inhibited their neuronal differentiation, and impaired the excitatory synaptic transmission of NPC-derived neurons. These results indicate that POU3F2 regulates TRIM8 expression through the SCZ-associated SNP rs5011218, and both genes may be involved in the etiology of SCZ by regulating neural development and synaptic function.


Subject(s)
Carrier Proteins , Homeodomain Proteins , Nerve Tissue Proteins , Neural Stem Cells , POU Domain Factors , Schizophrenia , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Schizophrenia/genetics
6.
Neurobiol Aging ; 93: 143.e9-143.e13, 2020 09.
Article in English | MEDLINE | ID: mdl-32371107

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease with a relatively unclear etiology. Previous studies have shown that N6-methyladenosine (m6A) is a vital RNA modification enriched in brain tissue, and that the genes involved in m6A modification are implicated in various neurologic diseases. Here, we conducted a comprehensive genetic analysis using targeted sequencing with molecular inversion probes (MIPs) to identify m6A-modification genes (including METTL3, METTL14, WTAP, FTO, ALKBH5, YTHDF1, YTHDF2, YTHDF3, HNRNPC, and ELAVL1) in a total of 1647 sporadic PD patients and 1372 controls of Han Chinese origin. PD patients were divided into early-onset PD (EOPD) and late-onset PD (LOPD) based on whether the onset of motor symptoms occurred before or after 50 years of age. Rare variants were subjected to gene-based burden tests and common variants were subjected to single-variant association analyses. As a result, we identified 214 rare variants in all 10 m6A-modification genes and 16 common variants in 7 genes. Gene-wise association analyses of rare variants in each m6A-modification gene did not achieved a p value of less than 0.05 in either total cohorts or 2 age groups. In fact, p values greater than 0.05 were found when conducting single-variant association analyses on common variants of these genes between PD and control patients. Our comprehensive analyses of m6A-modification genes suggest that there is no significant association between these 10 m6A-modification genes and the risk of sporadic PD.


Subject(s)
Adenosine/analogs & derivatives , Genetic Association Studies , Parkinson Disease/genetics , RNA Processing, Post-Transcriptional/genetics , Adenosine/genetics , Adenosine/metabolism , Aged , Aged, 80 and over , Asian People/genetics , Brain/metabolism , Cell Cycle Proteins/genetics , Female , Genetic Variation , Humans , Male , Methyltransferases/genetics , Middle Aged , RNA Splicing Factors/genetics , Risk
7.
Neurobiol Aging ; 84: 242.e13-242.e16, 2019 12.
Article in English | MEDLINE | ID: mdl-30948140

ABSTRACT

DNA methylation is an important regulatory mechanism of Parkinson's disease (PD). To investigate the relationship between DNA methylation and hydroxymethylation genes and PD, we performed gene-targeted sequencing using molecular inversion probes in a Chinese PD population. We sequenced 12 genes related to DNA methylation and hydroxymethylation in 1657 patients and 1394 control subjects. We conducted genewise association analyses of rare variants detected in the present study and identified the TET1 gene as important in PD (p = 0.0037738, 0.013, 0.019521 (b.collapse test, variable threshold test, and skat-o test, respectively; sex + age as covariates). However, no positive results were observed when conducting association analyses on common variants in these genes. We performed a comprehensive analysis of associations between variants of DNA methylation and hydroxymethylation genes and PD, resulting in determination that TET1 might play a role in PD.


Subject(s)
DNA Methylation , Methylation , Parkinson Disease/genetics , Humans
8.
Sci Transl Med ; 10(472)2018 12 19.
Article in English | MEDLINE | ID: mdl-30545964

ABSTRACT

Schizophrenia and bipolar disorder are complex psychiatric diseases with risks contributed by multiple genes. Dysregulation of gene expression has been implicated in these disorders, but little is known about such dysregulation in the human brain. We analyzed three transcriptome datasets from 394 postmortem brain tissue samples from patients with schizophrenia or bipolar disorder or from healthy control individuals without a known history of psychiatric disease. We built genome-wide coexpression networks that included microRNAs (miRNAs). We identified a coexpression network module that was differentially expressed in the brain tissue from patients compared to healthy control individuals. This module contained genes that were principally involved in glial and neural cell genesis and glial cell differentiation, and included schizophrenia risk genes carrying rare variants. This module included five miRNAs and 545 mRNAs, with six transcription factors serving as hub genes in this module. We found that the most connected transcription factor gene POU3F2, also identified on a genome-wide association study for bipolar disorder, could regulate the miRNA hsa-miR-320e and other putative target mRNAs. These regulatory relationships were replicated using PsychENCODE/BrainGVEX datasets and validated by knockdown and overexpression experiments in SH-SY5Y cells and human neural progenitor cells in vitro. Thus, we identified a brain gene expression module that was enriched for rare coding variants in genes associated with schizophrenia and that contained the putative bipolar disorder risk gene POU3F2 The transcription factor POU3F2 may be a key regulator of gene expression in this disease-associated gene coexpression module.


Subject(s)
Brain/metabolism , Gene Regulatory Networks , Homeodomain Proteins/metabolism , Mental Disorders/genetics , POU Domain Factors/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Databases, Genetic , Gene Expression Regulation , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Homeodomain Proteins/genetics , Humans , Neural Stem Cells/metabolism , POU Domain Factors/genetics , Postmortem Changes , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
9.
J Clin Endocrinol Metab ; 103(1): 125-138, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29145611

ABSTRACT

Context: Genome-wide association studies (GWASs) have been successful in identifying loci associated with osteoporosis and obesity. However, the findings explain only a small fraction of the total genetic variance. Objective: The aim of this study was to identify novel pleiotropic genes important in osteoporosis and obesity. Design and Setting: A pleiotropic conditional false discovery rate method was applied to three independent GWAS summary statistics of femoral neck bone mineral density, body mass index, and waist-to-hip ratio. Next, differential expression analysis was performed for the potentially pleiotropic genes, and weighted genes coexpression network analysis (WGCNA) was conducted to identify functional connections between the suggested pleiotropic genes and known osteoporosis/obesity genes using transcriptomic expression data sets in osteoporosis/obesity-related cells. Results: We identified seven potentially pleiotropic loci-rs3759579 (MARK3), rs2178950 (TRPS1), rs1473 (PUM1), rs9825174 (XXYLT1), rs2047937 (ZNF423), rs17277372 (DNM3), and rs335170 (PRDM6)-associated with osteoporosis and obesity. Of these loci, the PUM1 gene was differentially expressed in osteoporosis-related cells (B lymphocytes) and obesity-related cells (adipocytes). WGCNA showed that PUM1 positively interacted with several known osteoporosis genes (AKAP11, JAG1, and SPTBN1). ZNF423 was the highly connected intramodular hub gene and interconnected with 21 known osteoporosis-related genes, including JAG1, EN1, and FAM3C. Conclusions: Our study identified seven potentially pleiotropic genes associated with osteoporosis and obesity. The findings may provide new insights into a potential genetic determination and codetermination mechanism of osteoporosis and obesity.


Subject(s)
Genetic Markers , Genome-Wide Association Study , Obesity/genetics , Osteoporosis/genetics , Polymorphism, Single Nucleotide , Transcriptome , Bone Density , Genetic Predisposition to Disease , Humans , Obesity/pathology , Osteoporosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...