Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Sci ; 8(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34679063

ABSTRACT

Bones play an important role in maintaining the level of calcium in blood. They provide support for soft tissues and hematopoiesis and undergo continuous renewal throughout life. In addition, vitamin D is involved in regulating bone and calcium homeostasis. Galectin-3 (Gal-3) is a ß-galactoside-binding protein that can regulate bone cell differentiation and function. Here, we aimed to study the regulatory effects of Gal-3 on vitamin-D-regulated osteoclastogenesis and bone resorption in chicken. Gal-3 expression in bone marrow stromal cells (BMSCs) from 18-day-old chicken embryos was inhibited or overexpressed. BMSCs were then co-cultured with bone marrow monocytes/macrophages (BMMs) with or without addition of 1α,25(OH)2D3. The results showed that 1α,25(OH)2D3 upregulated the expression of Gal-3 mRNA and receptor activator of nuclear-factor κB ligand (RANKL) expression in BMSCs and promoted osteoclastogenesis, as shown by the upregulated expression of osteoclast (OC) markers (CtsK, CAII, MMP-9, and TRAP) and increased bone resorption, a method for measuring the bone resorption area in vitro. Knockdown of Gal-3 by small-interfering RNA (siRNA) in BMSCs downregulated the expression of RANKL mRNA and attenuated the effects of 1α,25(OH)2D3 on osteoclastogenesis and bone resorption. Conversely, overexpression of Gal-3 in BMSCs enhanced the effects of osteoclastogenesis and bone resorption by increasing the expression of RANKL mRNA. These results demonstrated that Gal-3 mediates the differentiation and bone resorption of osteoclasts regulated by 1α,25(OH)2D3.

2.
Differentiation ; 121: 35-43, 2021.
Article in English | MEDLINE | ID: mdl-34454349

ABSTRACT

Osteoclastogenesis is induced by receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), and can be suppressed by osteoprotegerin (OPG). Beclin1 has a dual role in osteoclastogenesis. However, the role of Beclin1-mediated autophagy during OPG-induced inhibition of osteoclastogenesis remains unclear. Here, we found that Beclin1 and matrix metalloproteinase 9 (MMP-9) expression were increased during osteoclastogenesis. OPG (20, 40, and 80 ng/mL) decreased Src and MMP-9 expression, but augmented Beclin1 expression and fluorescence intensity. Similarly, treatment with the autophagy activator rapamycin increased Beclin1 expression during OPG-induced inhibition of osteoclastogenesis. Further, Beclin1 knockdown restored osteoclast numbers by reducing autophagy during OPG-induced inhibition of osteoclastogenesis. These results indicate that Beclin1 has a positive role during OPG-induced inhibition of osteoclastogenesis by regulating autophagy, which might provide a potential basis for osteoclastogenesis.


Subject(s)
Osteogenesis , Osteoprotegerin , Autophagy , Beclin-1 , Osteoclasts
3.
Int J Endocrinol Metab ; 17(4): e91583, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31998380

ABSTRACT

BACKGROUND: Vitamin D is an important steroid that can regulate bone metabolism including osteoclast (OC) differentiation. Transient receptor potential cation channel subfamily V member 5 (TRPV5), is a calcium channel protein involved in OC differentiation. However, the impact of vitamin D on TRPV5 expression during OC differentiation is not clear. OBJECTIVES: To determine if 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates the expression of TRPV5 during OC differentiation. METHODS: Bone marrow mononuclear macrophage (BMMs) were induced to differentiate into OC with or without treatment with 10 nM 1,25(OH)2D3. The expression levels of vitamin D receptor (VDR) and TRPV5 were examined. The expression of several OC markers, including tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (Ca II), cathepsin K (CTSK), and vacuolar-type H+-ATPase (V-ATPase) were also detected. RESULTS: We found that the VDR was expressed in murine bone marrow-derived macrophages at the early stage of OC differentiation. TRPV5 expression was increased during OC differentiation, which was down-regulated by 1,25(OH)2D3 after a prolonged exposure. The 1,25(OH)2D3 and TRPV5 inhibitors inhibited OC differentiation. CONCLUSIONS: 1,25(OH)2D3 can inhibit TRPV5 expression as well as TRPV5 inhibitors during OC differentiation. This suggests that 1,25(OH)2D3 may suppress OC differentiation by inhibiting TRPV5 expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...