Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 5887, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620853

ABSTRACT

TRIP6, a member of the ZYXIN-family of LIM domain proteins, is a focal adhesion component. Trip6 deletion in the mouse, reported here, reveals a function in the brain: ependymal and choroid plexus epithelial cells are carrying, unexpectedly, fewer and shorter cilia, are poorly differentiated, and the mice develop hydrocephalus. TRIP6 carries numerous protein interaction domains and its functions require homodimerization. Indeed, TRIP6 disruption in vitro (in a choroid plexus epithelial cell line), via RNAi or inhibition of its homodimerization, confirms its function in ciliogenesis. Using super-resolution microscopy, we demonstrate TRIP6 localization at the pericentriolar material and along the ciliary axoneme. The requirement for homodimerization which doubles its interaction sites, its punctate localization along the axoneme, and its co-localization with other cilia components suggest a scaffold/co-transporter function for TRIP6 in cilia. Thus, this work uncovers an essential role of a LIM-domain protein assembly factor in mammalian ciliogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Brain/pathology , Ependyma/pathology , Focal Adhesions/metabolism , Gene Expression Regulation , Mice , Mice, Knockout , RNA Interference , Transcriptome
2.
Free Radic Biol Med ; 42(1): 90-105, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17157196

ABSTRACT

Poly(ADP-ribose) is synthesized from nicotinamide adenine dinucleotide (NAD) by poly(ADP-ribose) polymerase 1 (PARP-1) and degraded by poly(ADP-ribose) glycohydrolase (PARG). The aim of the present study was to examine the role of PARG in the development of experimental colitis. To address this question, we used an experimental model of colitis, induced by dinitrobenzene sulfonic acid (DNBS). Mice lacking the functional 110-kDa isoform of PARG (PARG(110)KO mice) were resistant to colon injury induced by DNBS. The mucosa of colon tissues showed reduction of myeloperoxidase activity and attenuated staining for intercellular adhesion molecule 1 and vascular cell adhesion molecule 1. Moreover, overproduction of proinflammatory factors TNF-alpha and IL-1beta and activation of cell death signaling pathway, i.e., the FAS ligand, were inhibited in these mutant mice. Finally pharmacological treatment of WT mice with GPI 16552 and 18214, two novel PARG inhibitors, showed a significant protective effect in DNBS-induced colitis. These genetic and pharmacological studies demonstrate that PARG modulates the inflammatory response and tissue injury events associated with colitis and PARG may be considered as a novel target for pharmacological intervention for the pathogenesis.


Subject(s)
Colitis/therapy , Glycoside Hydrolases/physiology , Inflammatory Bowel Diseases/therapy , Animals , Benzenesulfonates/toxicity , Cell Death , Colitis/chemically induced , Colitis/enzymology , Disease Models, Animal , Fas Ligand Protein/metabolism , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/genetics , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/enzymology , Interleukin-1beta/metabolism , Mice , Peroxidase/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...