Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 760: 144311, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33341622

ABSTRACT

Recovering nitrogen and phosphorus from waste water in the form of struvite is an effective way to recycle resources. The insufficient purity of the resulting struvite and the large loss of nitrogen and phosphorus are the challenges at present. Therefore, it is urgent to develop innovative method in struvite crystallization process for efficient nitrogen and phosphorus recovery. This study proposed a crystallization method to reduce the loss of nitrogen and phosphorus by a struvite fluidized bed reactor (FBR) with optimized structure and operation conditions. The properties of struvite obtained under various conditions in the reactor were studied, and the internal operating conditions of the reactor were simulated with COMSOL Multiphysics to verify the effectiveness of the reactor optimization. This reactor achieved stable operation under the conditions of N/P = 1:1 and pH = 9.0. The purity of struvite obtained reached 98.5%, the conversion rate of ammonia nitrogen reached 97.2%, and struvite crystals could grow to 84 µm within 24 h. The simulation results showed that the Venturi tubes installed at multiple locations increased the turbulent energy to 4 × 10-4 m2/s2, which greatly improved the mass transfer efficiency. The trajectory of the crystal particles was consistent with the fluid flow field, which promoted the purification and growth of the crystal. In general, the new FBR with enhanced external recirculation would be a very feasible way to improve crystal growth and crystal purification of struvite, and it could enhance the recovery efficiency of nitrogen and phosphorus with reduced cost.

2.
Sci Total Environ ; 670: 149-157, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30904641

ABSTRACT

NaClO based chemically enhanced backwash (CEB) is often administered to maintain membrane permeability during the operation of MBR. However, the effect and working mechanism of NaClO concentrations in CEB were rarely investigated. The current investigation examined the changes in membrane resistance, permeate production and membrane morphology with or without CEB in an anammox MBR to reveal the scrubbing effect of different NaClO concentrations (0-596 mg/L). Good cleaning effect indicated by membrane fouling rate of 1.98-2.26 kPa/day and membrane permeate production of 80-88 L was observed when NaClO concentration of 149-596 mg/L was used. The best cleaning effect was observed when 298 mg/L of NaClO was used. To explore the mechanism of CEB action, backwashing foulants were also analyzed. Insoluble EPS transformed into soluble forms like S-EPS or SMP after the sludge was exposed to NaClO. The NaClO based CEB removed 112-675 mg of polysaccharide (PS)/m2 in foulants at NaClO concentration of 149-596 mg/L, which was significantly higher than the value obtained by pure water (35 mg PS/m2). The possible mechanisms behind the detachment of soluble PS seemed as oxidation and sterilization by NaClO. The current investigation provides useful guidelines on NaClO concentrations applied during CEB for anammox MBR.


Subject(s)
Biofouling , Membranes, Artificial , Sodium Hypochlorite/chemistry , Waste Disposal, Fluid/methods
3.
Article in English | MEDLINE | ID: mdl-30626070

ABSTRACT

Municipal solid waste incineration fly ash (MSWI FA) and granulated lead smelting slag (GLSS) are toxic industrial wastes. In the present study, granulated lead smelting slag (GLSS) was pretreated as a geopolymer precursor through the high-energy ball milling activation process, which could be used as a geopolymeric solidification/stabilization (S/S) reagent for MSWI FA. The S/S process has been estimated through the physical properties and heavy metals leachability of the S/S matrices. The results show that the compressive strength of the geopolymer matrix reaches 15.32 MPa after curing for 28 days under the best parameters, and the physical properties meet the requirement of MU10 grade fly ash brick. In addition, the toxicity characteristic leaching procedure (TCLP) test results show that arsenic and heavy metals are immobilized effectively in the geopolymer matrix, and their concentrations in the leachate are far below the US EPA TCLP limits. The hydration products of the geopolymer binder are characterized by X-ray diffraction and Fourier transform infrared methods. The results show that the geopolymer gel and Friedel's salt are the main hydration products. The S/S mechanism of the arsenic and heavy metals in the geopolymer matrix mainly involves physical encapsulation of the geopolymer gel, geopolymer adsorption and ion exchange of Friedel's salt.


Subject(s)
Coal Ash/chemistry , Lead/chemistry , Polymers/chemistry , Refuse Disposal/methods , Water Pollutants, Chemical/chemistry , Arsenic/chemistry , Incineration , Industrial Waste , Metals, Heavy/chemistry
4.
Environ Sci Pollut Res Int ; 25(36): 36680-36692, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377966

ABSTRACT

The adsorption behavior of Zn2+ in four different biological sludge systems, i.e. activated sludge, denitrification sludge, short-cut nitrification sludge, and anammox granules, was investigated. The results indicated that all sludge samples possessed considerable potential for Zn2+ adsorption. Short-cut nitrification sludge possessed the highest Zn2+ maximum adsorption capacity (qm) of 36.4 mg g SS-1, which was much higher than other sludges applied (12.8-14.7 mg g SS-1). Besides, the adsorption rate for short-cut nitrification sludge was fastest among the four types of sludge after fitting with a pseudo-second-order rate equation. Comparing with the physicochemical properties of the four sludges, the soluble extracellular polymeric substances (EPS), especially soluble polysaccharide (PS), played a prior role in binding metal cations (i.e., Zn). The present study also showed that with less than 30% of Zn2+ trapped by EPS, 61.6-71.9% of Zn2+could be harvested directly by cells, indicating that the protecting capability by EPS was limited. Therefore, it is important to remove metal ions as early as possible if the activated sludge processes encountered high stress of heavy metal. Graphical abstract ᅟ.


Subject(s)
Extracellular Polymeric Substance Matrix/chemistry , Sewage/chemistry , Sewage/microbiology , Water Pollutants, Chemical/analysis , Water Purification/methods , Zinc/analysis , Adsorption , Aerobiosis , Anaerobiosis , China , Denitrification , Models, Theoretical , Nitrification
5.
Environ Sci Pollut Res Int ; 25(8): 7600-7607, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29282669

ABSTRACT

Flotation waste of copper slag (FWCS), neutralization sludge (NS), and arsenic-containing gypsum sludge (GS), both of which are difficult to dispose of, are major solid wastes produced by the copper smelting. This study focused on the co-treatment of FWCS, NS, and GS for solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Firstly, the preparation parameters of binder composed of FWCS, NS, and cement clinker were optimized to be FWCS dosage of 40%, NS dosage of 10%, cement clinker dosage of 50%, mill time of 1.5 h, and water-to-binder ratio of 0.25. On these conditions, the unconfined compressive strength (UCS) of the binder reached 43.24 MPa after hydration of 28 days. Then, the binder was used to solidify/stabilize the As-containing GS. When the mass ratio of binder-to-GS was 5:5, the UCS of matrix can reach 11.06 MPa after hydration of 28 days, meeting the required UCS level of MU10 brick in China. Moreover, arsenic and other heavy metals in FWCS, NS, and GS were effectively solidified or stabilized. The heavy metal concentrations in leachate were much lower than those in the limits of China standard leaching test (CSLT). Therefore, the matrices were potential to be used as bricks in some constructions. XRD analysis shows that the main hydration products of the matrix were portlandite and calcium silicate hydrate. These hydration products may play a significant role in the stabilization/solidification of arsenic and heavy metals.


Subject(s)
Arsenic/chemistry , Calcium Compounds/chemistry , Calcium Sulfate/chemistry , Construction Materials/analysis , Copper/chemistry , Metals, Heavy/analysis , Sewage/analysis , Silicates/chemistry , Arsenic/analysis , Calcium Sulfate/analysis , China , Copper/analysis , Metals, Heavy/chemistry
6.
Chemosphere ; 194: 117-124, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29197814

ABSTRACT

The mechanism of As(V) removal from the drinking water and industrial effluents by iron materials remains unclear at the molecular level. In this work, the association of Fe-based materials with As(V) species was explored using density functional theory and ab initio calculations. Solvent separated ion pair structures of [FeH2AsO4]2+aq species may be dominant in an acidic solution of FeAs complex. The association trend of H2AsO4- species by Fe3+aq is found to be quite weak in the aqueous solution, which may be attributed to the strong hydration of Fe3+aq and [FeH2AsO4]2+ species. However, the association of H2AsO4- species by colloidal clusters is quite strong, due to the weakened hydration of Fe(III) in colloidal structures. The hydrophobicity of Fe-based materials may be one of the key factors for their As(V) removal efficiency in an aqueous phase. When the number of OH- coordinated with Fe(III) increases, the association trend of As(V) by colloidal ferric hydroxides weakens accordingly. This study provides insights into understanding the coprecipitation and adsorption mechanisms of arsenate removal and revealing the high efficiency of arsenate removal by colloidal ferric hydroxides or iron salts under moderate pH conditions.


Subject(s)
Arsenic/isolation & purification , Iron Compounds/chemistry , Water Purification/methods , Adsorption , Arsenates/isolation & purification , Arsenic/chemistry , Chemical Precipitation , Ferric Compounds , Hydrogen-Ion Concentration , Water Pollutants, Chemical/isolation & purification
7.
J Hazard Mater ; 344: 343-349, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29080487

ABSTRACT

A new method in which Pb/Zn smelter waste containing arsenic and heavy metals (arsenic sludge), red mud and lime are utilized to prepare red mud-based cementitious material (RCM) is proposed in this study. XRD, SEM, FTIR and unconfined compressive strength (UCS) tests were employed to assess the physicochemical properties of RCM. In addition, ettringite and iron oxide-containing ettringite were used to study the hydration mechanism of RCM. The results show that the UCS of the RCM (red mud+arsenic sludge+lime) was higher than that of the binder (red mud+arsenic sludge). When the mass ratio of m (binder): m (lime) was 94:6 and then maintained 28days at ambient temperature, the UCS reached 12.05MPa. The red mud has potential cementitious characteristics, and the major source of those characteristics was the aluminium oxide. In the red mud-arsenic sludge-lime system, aluminium oxide was effectively activated by lime and gypsum to form complex hydration products. Some of the aluminium in ettringite was replaced by iron to form calcium sulfoferrite hydrate. The BCR and leaching toxicity results show that the leaching concentration was strongly dependent on the chemical speciation of arsenic and the hydration products. Therefore, the investigated red mud and arsenic sludge can be successfully utilized in cement composites to create a red mud-based cementitious material.

8.
Environ Sci Pollut Res Int ; 24(35): 27573-27586, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28980103

ABSTRACT

In recent years, international research on the toxicity of the heavy metal, antimony, has gradually changed focus from early medical and pharmacological toxicology to environmental toxicology and ecotoxicology. However, little research has been conducted for sources identification and risk management of heavy metals pollution by long-term antimony mining activities. In this study, a large number of investigations were conducted on the temporal and spatial distribution of antimony and related heavy metal contaminants (lead, zinc, and arsenic), as well as on the exposure risks for the population for the Yuxi river basin in the Hunan province, China. The scope of the investigations included mine water, waste rock, tailings, agricultural soil, surface water, river sediments, and groundwater sources of drinking water. Health and ecological risks from exposure to heavy metal pollution were evaluated. The main pollution sources of heavy metals in the Yuxi River basin were analyzed. Remediation programs and risk management strategies for heavy metal pollution were consequently proposed. This article provides a scientific basis for the risk assessment and management of heavy metal pollution caused by antimony basin ore mining.


Subject(s)
Antimony , Environmental Monitoring/methods , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , China , Groundwater/chemistry , Humans , Risk Assessment , Rivers/chemistry , Soil/chemistry
9.
Phys Chem Chem Phys ; 19(18): 11390-11403, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28422226

ABSTRACT

The molecular structure of growth units building crystals is a fundamental issue in the crystallization processes from aqueous solutions. In this work, a systematic investigation of pre-nucleation clusters and their hydration characteristics in aqueous CaSO4 solutions was performed using ab initio calculations and molecular dynamics (MD) simulations. The results of ab initio calculations and MD simulations indicate that the dominant species in aqueous CaSO4 solutions are monodentate ion-associated structures. Compared with charged ion clusters, neutral clusters are more likely to be present in an aqueous CaSO4 solution. Neutral (CaSO4)m clusters are probably the growth units involved in the pre-nucleation or crystallization processes. Meanwhile, hydration behavior around ion associated species in aqueous CaSO4 solutions plays an important role in related phase/polymorphism selections. Upon ion clustering, the residence of some water molecules around Ca2+ in ion-associated species is weakened while that of some bridging waters is enhanced due to dual interaction by Ca2+ and SO42-. Some phase/polymorphism selections can be achieved in aqueous CaSO4 solutions by controlling the hydration around pre-nucleation clusters. Moreover, the association trend between calcium and sulfate is found to be relatively strong, which hints at the low solubility of calcium sulfate in water.

10.
J Environ Manage ; 181: 756-761, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27449964

ABSTRACT

Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials.


Subject(s)
Arsenic/chemistry , Environmental Restoration and Remediation/methods , Hazardous Waste , Metallurgy , Metals, Heavy/chemistry , Sewage/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Arsenic/analysis , China , Construction Materials , Industrial Waste/analysis , Lead/chemistry , Recycling , Water Pollutants, Chemical/analysis , Zinc/chemistry
11.
Biodegradation ; 27(2-3): 131-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27091324

ABSTRACT

The short-cut nitrification (SCN) performance of an airlift reactor (ALR) was investigated under increasing bicarbonate condition. The sequential increase of bicarbonate from 2.5 to 7.0 g/L accelerated the nitrite accumulation and improved the NAP to 99 %. With the increase of bicarbonate dose to 11 g/L, the ammonium removal efficiency and the ammonium removal rate (ARR) were improved to 95.1 % and 0.57 kg/m(3)/day, respectively. However, the elevation of bicarbonate concentration from 11.0 to 14.0 g/L gradually depreciated the nitrite accumulation percentage to 62.5 %. Then, the reactor was operated in increasing ammonium strategy to increase the nitrogen loading rate (NLR) to 1.1 kg/m(3)/day under 700 mg/L influent ammonium concentration. The ARR and nitrite production rate were elevated to 1.1 and 0.9 kg/m(3)/day, respectively. The SCN performance was improved to 1.8 kg/m(3)/day (NLR) by the subsequent progressive shortening of HRT to 4.8 h at ammonium concentration of 350 mg/L, which was 1.6 times higher than that of the increasing ammonium strategy. Chemical analysis with EDS, FTIR and XRD confirmed the presence of CaCO3 precipitates on biomass surface during the long-term operation under high bicarbonate conditions. The attachment of precipitates to the SCN sludge helped to improve the biomass settleability and finally enhanced the SCN performance of the ALR.


Subject(s)
Bicarbonates/chemistry , Biomass , Bioreactors , Calcium Carbonate/chemistry , Nitrification , Ammonium Compounds/metabolism , Biodegradation, Environmental , Waste Disposal, Fluid
12.
Bioresour Technol ; 185: 134-42, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25768415

ABSTRACT

The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater.


Subject(s)
Ammonium Compounds/metabolism , Bacteria, Anaerobic/metabolism , Bioreactors/microbiology , Nitrification/physiology , Water Pollutants, Chemical/metabolism , Water Purification/instrumentation , Air , Ammonium Compounds/administration & dosage , Ammonium Compounds/isolation & purification , Bacteria, Anaerobic/drug effects , Dose-Response Relationship, Drug , Equipment Design , Equipment Failure Analysis , Nitrification/drug effects , Water Pollutants, Chemical/isolation & purification
13.
Environ Sci Pollut Res Int ; 20(9): 6050-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23529403

ABSTRACT

Floatation tailings (FT) are the main by-products of the hydrothermal sulfidation-flotation process. FT (FT1 and FT2) were obtained by treating two different neutralization sludges (NS) (NS1 and NS2). This paper quantitatively evaluated the environmental risks of heavy metals (Zn, Cd, Cu, Pb, and As) in FT versus NS. The total concentration and leaching rates (R 2) of heavy metals in FT were much lower than those in NS, demonstrating that the hydrothermal sulfidation-flotation process was able to effectively suppress the mobility and leachability of heavy metals. The BCR-three sequence leaching procedure of FT confirmed that all metals were transformed into more stable forms (residue and oxidizable forms) than were found that in NS. The potential ecological risk index indicated that the overall risks caused by heavy metals decreased significantly from 6627.59 and 7229.67 (very serious risk) in NS1 and NS2, respectively, to 80.26 and 76.27 (low risk) in FT1 and FT2, respectively. According to the risk assessment code, none of the heavy metals in FT posed significant risk to the natural environment except Zn (with low risk). In general, the risk of heavy metals in FT had been well controlled.


Subject(s)
Industrial Waste/analysis , Metals, Heavy/chemistry , Refuse Disposal/methods , Water Pollutants, Chemical/chemistry , Environmental Monitoring , Hydrogen-Ion Concentration , Metallurgy/methods , Mining , Risk Factors , Water/chemistry
14.
J Hazard Mater ; 250-251: 1-8, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23434474

ABSTRACT

A novel mathematical model was developed to estimate the volumetric nitrogen conversion rates of a high-rate Anammox UASB reactor based on the packing patterns of granular sludge. A series of relationships among granular packing density, sludge concentration, hydraulic retention time and volumetric conversion rate were constructed to correlate Anammox reactor performance with granular packing patterns. It was suggested that the Anammox granules packed as the equivalent simple cubic pattern in high-rate UASB reactor with packing density of 50-55%, which not only accommodated a high concentration of sludge inside the reactor, but also provided large pore volume, thus prolonging the actual substrate conversion time. Results also indicated that it was necessary to improve Anammox reactor performance by enhancing substrate loading when sludge concentration was higher than 37.8 gVSS/L. The established model was carefully calibrated and verified, and it well simulated the performance of granule-based high-rate Anammox UASB reactor.


Subject(s)
Ammonia/chemistry , Bioreactors , Nitrogen/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Calibration , Equipment Design , Hydrogen-Ion Concentration , Models, Theoretical , Oxygen/chemistry , Particle Size
15.
Biomed Res Int ; 2013: 134914, 2013.
Article in English | MEDLINE | ID: mdl-24381935

ABSTRACT

Nitrogen pollution created severe environmental problems and increasingly has become an important issue in China. Since the first discovery of ANAMMOX in the early 1990s, this related technology has become a promising as well as sustainable bioprocess for treating strong nitrogenous wastewater. Many Chinese research groups have concentrated their efforts on the ANAMMOX research including bacteria, process development, and application during the past 20 years. A series of new and outstanding outcomes including the discovery of new ANAMMOX bacterial species (Brocadia sinica), sulfate-dependent ANAMMOX bacteria (Anammoxoglobus sulfate and Bacillus benzoevorans), and the highest nitrogen removal performance (74.3-76.7 kg-N/m(3)/d) in lab scale granule-based UASB reactors around the world were achieved. The characteristics, structure, packing pattern and floatation mechanism of the high-rate ANAMMOX granules in ANAMMOX reactors were also carefully illustrated by native researchers. Nowadays, some pilot and full-scale ANAMMOX reactors were constructed to treat different types of ammonium-rich wastewater including monosodium glutamate wastewater, pharmaceutical wastewater, and leachate. The prime objective of the present review is to elucidate the ongoing ANAMMOX research in China from lab scale to full scale applications, comparative analysis, and evaluation of significant findings and to set a design to usher ANAMMOX research in culmination.


Subject(s)
Bacteria/metabolism , Nitrogen/toxicity , Water Pollution, Chemical , Anaerobiosis , Bioreactors , China , Humans , Wastewater/chemistry , Wastewater/microbiology
16.
J Hazard Mater ; 217-218: 307-14, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22487137

ABSTRACT

This study focuses on the application of hydrothermal sulfidation and floatation to treat the heavy-metal-containing sludge for recovery and stabilization. After the hydrothermal sulfidation, the sulfidation percentage of zinc and lead reach up to 85.0% and 75.4%, respectively. 33.3% of Zn, 58.9% of Pb and 68.8% of Cu can be recovered from the sludge by floatation. The lower recovery of ZnS attributes to its surface and structural characteristics. To compare these characteristics, three types of synthetic metal sulfide (ZnS, PbS and CuS) were prepared and examined with XRD, SEM and TEM. The poor floatability of the finely dispersed, round shape of ZnS can be improved by crystal modification in hydrothermal condition. With increasing the temperature and reaction time, the grain size of the ZnS increased from 7.95 nm to 44.28 nm and the recovery of Zn increased to from 33.3% to 72.8%. The TCLP results indicate that all the leached heavy metal concentrations of floatation tailings are under the allowable limit. No obvious increase of heavy metal concentration was observed in continuous leaching procedure. The presence of alkaline compounds after hydrothermal sulfidation might act as mineralogical scavengers of dissolved heavy metal released by sulfide oxidation to avoid the heavy metal pollution.


Subject(s)
Metals, Heavy/chemistry , Sewage , Sulfides/chemistry , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...