Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
Nature ; 626(7999): 517-522, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356066

ABSTRACT

Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.

2.
Nat Commun ; 14(1): 4827, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563126

ABSTRACT

Three-dimensional (3D) electronic band structure is fundamental for understanding a vast diversity of physical phenomena in solid-state systems, including topological phases, interlayer interactions in van der Waals materials, dimensionality-driven phase transitions, etc. Interpretation of ARPES data in terms of 3D electron dispersions is commonly based on the free-electron approximation for the photoemission final states. Our soft-X-ray ARPES data on Ag metal reveals, however, that even at high excitation energies the final states can be a way more complex, incorporating several Bloch waves with different out-of-plane momenta. Such multiband final states manifest themselves as a complex structure and added broadening of the spectral peaks from 3D electron states. We analyse the origins of this phenomenon, and trace it to other materials such as Si and GaN. Our findings are essential for accurate determination of the 3D band structure over a wide range of materials and excitation energies in the ARPES experiment.

3.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178606

ABSTRACT

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

4.
Phys Rev Lett ; 125(21): 216404, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33274965

ABSTRACT

We performed angle-resolved photoemission spectroscopy (ARPES) of bulk 2H-WSe_{2} for different crystal orientations linked to each other by time-reversal symmetry. We introduce a new observable called time-reversal dichroism in photoelectron angular distributions (TRDAD), which quantifies the modulation of the photoemission intensity upon effective time-reversal operation. We demonstrate that the hidden orbital pseudospin texture leaves its imprint on TRDAD, due to multiple orbital interference effects in photoemission. Our experimental results are in quantitative agreement with both the tight-binding model and state-of-the-art fully relativistic calculations performed using the one-step model of photoemission. While spin-resolved ARPES probes the spin component of entangled spin-orbital texture in multiorbital systems, we unambiguously demonstrate that TRDAD reveals its orbital pseudospin texture counterpart.

5.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33236903

ABSTRACT

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

6.
Nature ; 576(7787): 423-428, 2019 12.
Article in English | MEDLINE | ID: mdl-31853081

ABSTRACT

Magnetically doped topological insulators enable the quantum anomalous Hall effect (QAHE), which provides quantized edge states for lossless charge-transport applications1-8. The edge states are hosted by a magnetic energy gap at the Dirac point2, but hitherto all attempts to observe this gap directly have been unsuccessful. Observing the gap is considered to be essential to overcoming the limitations of the QAHE, which so far occurs only at temperatures that are one to two orders of magnitude below the ferromagnetic Curie temperature, TC (ref. 8). Here we use low-temperature photoelectron spectroscopy to unambiguously reveal the magnetic gap of Mn-doped Bi2Te3, which displays ferromagnetic out-of-plane spin texture and opens up only below TC. Surprisingly, our analysis reveals large gap sizes at 1 kelvin of up to 90 millielectronvolts, which is five times larger than theoretically predicted9. Using multiscale analysis we show that this enhancement is due to a remarkable structure modification induced by Mn doping: instead of a disordered impurity system, a self-organized alternating sequence of MnBi2Te4 septuple and Bi2Te3 quintuple layers is formed. This enhances the wavefunction overlap and size of the magnetic gap10. Mn-doped Bi2Se3 (ref. 11) and Mn-doped Sb2Te3 form similar heterostructures, but for Bi2Se3 only a nonmagnetic gap is formed and the magnetization is in the surface plane. This is explained by the smaller spin-orbit interaction by comparison with Mn-doped Bi2Te3. Our findings provide insights that will be crucial in pushing lossless transport in topological insulators towards room-temperature applications.

7.
J Phys Condens Matter ; 31(28): 283001, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-30933942

ABSTRACT

The goal of the present review is to cross-compare theoretical predictions with selected experimental results on bismuth thin films exhibiting topological properties and a strong Rashba effect. The theoretical prediction that a single free-standing Bi(1 1 1) bilayer is a topological insulator has triggered a large series of studies of ultrathin Bi(1 1 1) films grown on various substrates. Using selected examples we review theoretical predictions of atomic and electronic structure of Bi thin films exhibiting topological properties due to interaction with a substrate. We also survey experimental signatures of topological surface states and Rashba effect, as obtained mostly by angle- and spin-resolved photoelectron spectroscopy.

8.
Phys Rev Lett ; 121(7): 077205, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30169049

ABSTRACT

Femtosecond laser excitations in half-metal (HM) compounds are theoretically predicted to induce an exotic picosecond spin dynamics. In particular, conversely to what is observed in conventional metals and semiconductors, the thermalization process in HMs leads to a long living partially thermalized configuration characterized by three Fermi-Dirac distributions for the minority, majority conduction, and majority valence electrons, respectively. Remarkably, these distributions have the same temperature but different chemical potentials. This unusual thermodynamic state is causing a persistent nonequilibrium spin polarization only well above the Fermi energy. Femtosecond spin dynamics experiments performed on Fe_{3}O_{4} by time- and spin-resolved photoelectron spectroscopy support our model. Furthermore, the spin polarization response proves to be very robust and it can be adopted to selectively test the bulk HM character in a wide range of compounds.

9.
Ultramicroscopy ; 183: 19-29, 2017 12.
Article in English | MEDLINE | ID: mdl-28705441

ABSTRACT

The combination of momentum microscopy (high resolution imaging of the Fourier plane) with an imaging spin filter has recently set a benchmark in k-resolution and spin-detection efficiency. Here we show that the degree of parallelization can be further increased by time-of-flight energy recording. On the quest towards maximum information (in earlier work termed "complete" photoemission experiment) we have studied the prototypical high-Z fcc metal iridium. Large partial bandgaps and strong spin-orbit interaction lead to a sequence of spin-polarized surface resonances. Soft X-rays give access to the 4D spectral density function ρ (EB,kx,ky,kz) weighted by the photoemission cross section. The Fermi surface and all other energy isosurfaces, Fermi velocity distribution vF(kF), electron or hole conductivity, effective mass and inner potential can be obtained from the multi-dimensional array ρ by simple algorithms. Polarized light reveals the linear and circular dichroism texture in a simple manner and an imaging spin filter exposes the spin texture. One-step photoemission calculations are in fair agreement with experiment. Comparison of the Bloch spectral function with photoemission calculations uncovers that the observed high spin polarization of photoelectrons from bulk bands originates from the photoemission step and is not present in the initial state.

10.
Nat Commun ; 7: 13071, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767052

ABSTRACT

Entanglement of the spin-orbit and magnetic order in multiferroic materials bears a strong potential for engineering novel electronic and spintronic devices. Here, we explore the electron and spin structure of ferroelectric α-GeTe thin films doped with ferromagnetic Mn impurities to achieve its multiferroic functionality. We use bulk-sensitive soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to follow hybridization of the GeTe valence band with the Mn dopants. We observe a gradual opening of the Zeeman gap in the bulk Rashba bands around the Dirac point with increase of the Mn concentration, indicative of the ferromagnetic order, at persistent Rashba splitting. Furthermore, subtle details regarding the spin-orbit and magnetic order entanglement are deduced from spin-resolved ARPES measurements. We identify antiparallel orientation of the ferroelectric and ferromagnetic polarization, and altering of the Rashba-type spin helicity by magnetic switching. Our experimental results are supported by first-principles calculations of the electron and spin structure.

11.
J Phys Condens Matter ; 28(43): 436004, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27603180

ABSTRACT

Co/BaTiO3(0 0 1) is one of the most interesting multiferroic heterostructures as it combines different ferroic phases, setting this way the fundamentals for innovative technical applications. Various theoretical approaches have been applied to investigate the electronic and magnetic properties of Co/BaTiO3(0 0 1). Here we determine the magnetic properties of 3 ML Co/BaTiO3 by calculating spin-polarized electron diffraction as well as angle-resolved photoemission spectra, with both methods being well established as surface sensitive techniques. Furthermore, we discuss the impact of altering the BaTiO3 polarization on the spectra and ascribe the observed changes to characteristic details of the electronic structure.

12.
Sci Rep ; 6: 29394, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27406652

ABSTRACT

We find in the case of W(110) previously overlooked anomalous surface states having their spin locked at right angle to their momentum using spin-resolved momentum microscopy. In addition to the well known Dirac-like surface state with Rashba spin texture near the -point, we observe a tilted Dirac cone with circularly shaped cross section and a Dirac crossing at 0.28 × within the projected bulk band gap of tungsten. This state has eye-catching similarities to the spin-locked surface state of a topological insulator. The experiments are fortified by a one-step photoemission calculation in its density-matrix formulation.

13.
Nat Commun ; 7: 10559, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26892831

ABSTRACT

Magnetic doping is expected to open a band gap at the Dirac point of topological insulators by breaking time-reversal symmetry and to enable novel topological phases. Epitaxial (Bi(1-x)Mn(x))2Se3 is a prototypical magnetic topological insulator with a pronounced surface band gap of ∼100 meV. We show that this gap is neither due to ferromagnetic order in the bulk or at the surface nor to the local magnetic moment of the Mn, making the system unsuitable for realizing the novel phases. We further show that Mn doping does not affect the inverted bulk band gap and the system remains topologically nontrivial. We suggest that strong resonant scattering processes cause the gap at the Dirac point and support this by the observation of in-gap states using resonant photoemission. Our findings establish a mechanism for gap opening in topological surface states which challenges the currently known conditions for topological protection.

14.
Ultramicroscopy ; 159 Pt 3: 453-63, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26363904

ABSTRACT

The electronic surface states on Mo(110) have been investigated using time-of-flight momentum microscopy with synchrotron radiation (hν=35 eV). This novel angle-resolved photoemission approach yields a simultaneous acquisition of the E-vs-k spectral function in the full surface Brillouin zone and several eV energy interval. (kx,ky,EB)-maps with 3.4 Å(-1) diameter reveal a rich structure of d-like surface resonances in the spin-orbit induced partial band gap. Calculations using the one-step model in its density matrix formulation predict an anomalous state with Dirac-like signature and Rashba spin texture crossing the bandgap at Γ¯ and EB=1.2 eV. The experiment shows that the linear dispersion persists away from the Γ¯-point in an extended energy- and k∥-range. Analogously to a similar state previously found on W(110) the dispersion is linear along H¯-Γ¯-H¯ and almost zero along N¯-Γ¯-N¯. The similarity is surprising since the spin-orbit interaction is 5 times smaller in Mo. A second point with unusual topology is found midway between Γ¯ and N¯. Band symmetries are probed by linear dichroism.

15.
Phys Rev Lett ; 114(23): 237601, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-26196827

ABSTRACT

Electronic structure of the three-dimensional colossal magnetoresistive perovskite La(1-x)Sr(x)MnO3 has been established using soft-x-ray angle-resolved photoemission spectroscopy with its intrinsically sharp definition of three-dimensional electron momentum. The experimental results show much weaker polaronic coupling compared to the bilayer manganites and are consistent with the theoretical band structure including the empirical Hubbard parameter U. The experimental Fermi surface unveils the canonical topology of alternating three-dimensional electron spheres and hole cubes, with their shadow contours manifesting the rhombohedral lattice distortion. This picture has been confirmed by one-step photoemission calculations including displacement of the apical oxygen atoms. The rhombohedral distortion is neutral to the Jahn-Teller effect and thus polaronic coupling, but affects the double-exchange electron hopping and thus the colossal magnetoresistance effect.

16.
Phys Rev Lett ; 114(9): 097401, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793848

ABSTRACT

The prospect of optically inducing and controlling a spin-polarized current in spintronic devices has generated wide interest in the out-of-equilibrium electronic and spin structure of topological insulators. In this Letter we show that only measuring the spin intensity signal over several orders of magnitude by spin-, time-, and angle-resolved photoemission spectroscopy can provide a comprehensive description of the optically excited electronic states in Bi_{2}Se_{3}. Our experiments reveal the existence of a surface resonance state in the second bulk band gap that is benchmarked by fully relativistic ab initio spin-resolved photoemission calculations. We propose that the newly reported state plays a major role in the ultrafast dynamics of the system, acting as a bottleneck for the interaction between the topologically protected surface state and the bulk conduction band. In fact, the spin-polarization dynamics in momentum space show that these states display macroscopically different temperatures and, more importantly, different cooling rates over several picoseconds.

17.
J Phys Condens Matter ; 27(5): 056004, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25604525

ABSTRACT

A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.

18.
Phys Rev Lett ; 113(8): 086801, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25192117

ABSTRACT

Using angle-resolved photoemission spectroscopy, we show that the recently discovered surface state on SrTiO(3) consists of nondegenerate t(2g) states with different dimensional characters. While the d(xy) bands have quasi-2D dispersions with weak k(z) dependence, the lifted d(xz)/d(yz) bands show 3D dispersions that differ significantly from bulk expectations and signal that electrons associated with those orbitals permeate the near-surface region. Like their more 2D counterparts, the size and character of the d(xz)/d(yz) Fermi surface components are essentially the same for different sample preparations. Irradiating SrTiO(3) in ultrahigh vacuum is one method observed so far to induce the "universal" surface metallic state. We reveal that during this process, changes in the oxygen valence band spectral weight that coincide with the emergence of surface conductivity are disproportionate to any change in the total intensity of the O 1s core level spectrum. This signifies that the formation of the metallic surface goes beyond a straightforward chemical doping scenario and occurs in conjunction with profound changes in the initial states and/or spatial distribution of near-E(F) electrons in the surface region.

19.
J Phys Condens Matter ; 26(27): 274206, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24935908

ABSTRACT

The electronic structure and magnetic properties of the disordered alloy system fcc-FexNi1-x (fcc: face centered cubic) have been investigated by means of the KKR-CPA (Korringa-Kohn-Rostoker coherent potential approximation) band structure method. To investigate the impact of correlation effects, the calculations have been performed on the basis of the LSDA (local spin density approximation), the LSDA + U as well as the LSDA + DMFT (dynamical mean field theory). It turned out that the inclusion of correlation effects hardly changed the spin magnetic moments and the related hyperfine fields. The spin-orbit induced orbital magnetic moments and hyperfine fields, on the other hand, show a pronounced and element-specific enhancement. These findings are in full accordance with the results of a recent experimental study.


Subject(s)
Algorithms , Alloys/chemistry , Electromagnetic Fields , Iron/chemistry , Models, Chemical , Nickel/chemistry , Computer Simulation , Spin Labels , Statistics as Topic
20.
Nat Commun ; 5: 3974, 2014 May 30.
Article in English | MEDLINE | ID: mdl-24875774

ABSTRACT

Ferromagnetic thin films of Heusler compounds are highly relevant for spintronic applications owing to their predicted half-metallicity, that is, 100% spin polarization at the Fermi energy. However, experimental evidence for this property is scarce. Here we investigate epitaxial thin films of the compound Co2MnSi in situ by ultraviolet-photoemission spectroscopy, taking advantage of a novel multi-channel spin filter. By this surface sensitive method, an exceptionally large spin polarization of (93(-11)(+7)) % at room temperature is observed directly. As a more bulk sensitive method, additional ex situ spin-integrated high energy X-ray photoemission spectroscopy experiments are performed. All experimental results are compared with advanced band structure and photoemission calculations which include surface effects. Excellent agreement is obtained with calculations, which show a highly spin polarized bulk-like surface resonance ingrained in a half metallic bulk band structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...