Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Korean J Orthod ; 52(2): 112-122, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35321950

ABSTRACT

Objective: This study aimed to present and evaluate a new deep learning model for determining cervical vertebral maturation (CVM) degree and growth spurts by analyzing lateral cephalometric radiographs. Methods: The study sample included 890 cephalograms. The images were classified into six cervical stages independently by two orthodontists. The images were also categorized into three degrees on the basis of the growth spurt: pre-pubertal, growth spurt, and post-pubertal. Subsequently, the samples were fed to a transfer learning model implemented using the Python programming language and PyTorch library. In the last step, the test set of cephalograms was randomly coded and provided to two new orthodontists in order to compare their diagnosis to the artificial intelligence (AI) model's performance using weighted kappa and Cohen's kappa statistical analyses. Results: The model's validation and test accuracy for the six-class CVM diagnosis were 62.63% and 61.62%, respectively. Moreover, the model's validation and test accuracy for the three-class classification were 75.76% and 82.83%, respectively. Furthermore, substantial agreements were observed between the two orthodontists as well as one of them and the AI model. Conclusions: The newly developed AI model had reasonable accuracy in detecting the CVM stage and high reliability in detecting the pubertal stage. However, its accuracy was still less than that of human observers. With further improvements in data quality, this model should be able to provide practical assistance to practicing dentists in the future.

2.
Heliyon ; 7(10): e08143, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34660935

ABSTRACT

COVID-19 has produced a global pandemic affecting all over of the world. Prediction of the rate of COVID-19 spread and modeling of its course have critical impact on both health system and policy makers. Indeed, policy making depends on judgments formed by the prediction models to propose new strategies and to measure the efficiency of the imposed policies. Based on the nonlinear and complex nature of this disorder and difficulties in estimation of virus transmission features using traditional epidemic models, artificial intelligence methods have been applied for prediction of its spread. Based on the importance of machine and deep learning approaches in the estimation of COVID-19 spreading trend, in the present study, we review studies which used these strategies to predict the number of new cases of COVID-19. Adaptive neuro-fuzzy inference system, long short-term memory, recurrent neural network and multilayer perceptron are among the mostly used strategies in this regard. We compared the performance of several machine learning methods in prediction of COVID-19 spread. Root means squared error (RMSE), mean absolute error (MAE), R2 coefficient of determination (R2), and mean absolute percentage error (MAPE) parameters were selected as performance measures for comparison of the accuracy of models. R2 values have ranged from 0.64 to 1 for artificial neural network (ANN) and Bidirectional long short-term memory (LSTM), respectively. Adaptive neuro-fuzzy inference system (ANFIS), Autoregressive Integrated Moving Average (ARIMA) and Multilayer perceptron (MLP) have also have R2 values near 1. ARIMA and LSTM had the highest MAPE values. Collectively, these models are capable of identification of learning parameters that affect dissimilarities in COVID-19 spread across various regions or populations, combining numerous intervention methods and implementing what-if scenarios by integrating data from diseases having analogous trends with COVID-19. Therefore, application of these methods would help in precise policy making to design the most appropriate interventions and avoid non-efficient restrictions.

SELECTION OF CITATIONS
SEARCH DETAIL
...