Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396757

ABSTRACT

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Subject(s)
Glioblastoma , Glucose Transporter Type 3 , Humans , Biomarkers/metabolism , Cell Hypoxia/genetics , Cell Line, Tumor , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/radiotherapy , Glioblastoma/metabolism , Hypoxia , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism
2.
Eur J Med Chem ; 258: 115537, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37329715

ABSTRACT

A series of biologically unexplored substituted 1,3,4-subtituted-pyrrolo[3,2-c]quinoline derivatives (PQs) was evaluated against a panel of about 60 tumor cells (NCI). Based on the preliminary antiproliferative data, the optimizations efforts permitted us to design and synthesize a new series of derivatives allowing us to individuate a promising hit (4g). The insertion of a 4-benzo[d] [1,3]dioxol-5-yl moiety on increased and extended the activity towards five panel tumor cell lines such as leukemia, CNS, melanoma, renal and breast cancer, reaching IG50 in the low µM range. Replacement of this latter with a 4-(OH-di-Cl-Ph) group (4i) or introduction a Cl-propyl chain in position 1 (5), selectively addressed the activity against the entire leukemia sub-panel (CCRF-CEM, K-562, MOLT-4, RPMI-8226, SR). Preliminary biological assays on MCF-7 such as cell cycle, clonogenic assay, ROS content test alongside a comparison of viability between MCF-7 and non-tumorigenic MCF-10 were investigated. Among the main anticancer targets involved in breast cancer, HSP90 and ER receptors were selected for in silico studies. Docking analysis revealed a valuable affinity for HSP90 providing structural insights on the binding mode, and useful features for optimization.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Hydroxyquinolines , Quinolines , Humans , Female , Molecular Structure , Structure-Activity Relationship , Cell Proliferation , Cell Line, Tumor , Hydroxyquinolines/pharmacology , Quinolines/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Molecular Docking Simulation
3.
Commun Biol ; 6(1): 388, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031346

ABSTRACT

Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via µ-positron emission tomography/computed tomography (µPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.


Subject(s)
Glioblastoma , Radiation-Sensitizing Agents , Humans , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Glioblastoma/pathology , Protons , Boron , Mitophagy , Quality of Life , Radiation-Sensitizing Agents/pharmacology , Cell Death , Tumor Microenvironment
4.
J Pers Med ; 12(2)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35207800

ABSTRACT

Despite all the recent pharmacological advances and the introduction of targeted therapies in clinical practice, cancer still remains one of the leading cause of death, accounting for 10 million deaths per year, based on the most recent reports [...].

5.
Life (Basel) ; 11(11)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34833068

ABSTRACT

The rapid improvement of space technologies is leading to the continuous increase of space missions that will soon bring humans back to the Moon and, in the coming future, toward longer interplanetary missions such as the one to Mars. The idea of living in space is charming and fascinating; however, the space environment is a harsh place to host human life and exposes the crew to many physical challenges. The absence of gravity experienced in space affects many aspects of human biology and can be reproduced in vitro with the help of microgravity simulators. Simulated microgravity (s-µg) is applied in many fields of research, ranging from cell biology to physics, including cancer biology. In our study, we aimed to characterize, at the biological and mechanical level, a Random Positioning Machine in order to simulate microgravity in an in vitro model of Triple-Negative Breast Cancer (TNBC). We investigated the effects played by s-µg by analyzing the change of expression of some genes that drive proliferation, survival, cell death, cancer stemness, and metastasis in the human MDA-MB-231 cell line. Besides the mechanical verification of the RPM used in our studies, our biological findings highlighted the impact of s-µg and its putative involvement in cancer progression.

6.
Front Oncol ; 11: 682647, 2021.
Article in English | MEDLINE | ID: mdl-34262867

ABSTRACT

Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.

7.
J Pers Med ; 11(4)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923454

ABSTRACT

In Glioblastoma Multiforme (GBM), hypoxia is associated with radioresistance and poor prognosis. Since standard GBM treatments are not always effective, new strategies are needed to overcome resistance to therapeutic treatments, including radiotherapy (RT). Our study aims to shed light on the biomarker network involved in a hypoxic (0.2% oxygen) GBM cell line that is radioresistant after proton therapy (PT). For cultivating cells in acute hypoxia, GSI's hypoxic chambers were used. Cells were irradiated in the middle of a spread-out Bragg peak with increasing PT doses to verify the greater radioresistance in hypoxic conditions. Whole-genome cDNA microarray gene expression analyses were performed for samples treated with 2 and 10 Gy to highlight biological processes activated in GBM following PT in the hypoxic condition. We describe cell survival response and significant deregulated pathways responsible for the cell death/survival balance and gene signatures linked to the PT/hypoxia configurations assayed. Highlighting the molecular pathways involved in GBM resistance following hypoxia and ionizing radiation (IR), this work could suggest new molecular targets, allowing the development of targeted drugs to be suggested in association with PT.

8.
Sci Rep ; 11(1): 2830, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531515

ABSTRACT

Recent advances in Quantum Machine Learning (QML) have provided benefits to several computational processes, drastically reducing the time complexity. Another approach of combining quantum information theory with machine learning-without involving quantum computers-is known as Quantum-inspired Machine Learning (QiML), which exploits the expressive power of the quantum language to increase the accuracy of the process (rather than reducing the time complexity). In this work, we propose a large-scale experiment based on the application of a binary classifier inspired by quantum information theory to the biomedical imaging context in clonogenic assay evaluation to identify the most discriminative feature, allowing us to enhance cell colony segmentation. This innovative approach offers a two-fold result: (1) among the extracted and analyzed image features, homogeneity is shown to be a relevant feature in detecting challenging cell colonies; and (2) the proposed quantum-inspired classifier is a novel and outstanding methodology, compared to conventional machine learning classifiers, for the evaluation of clonogenic assays.

9.
Cancers (Basel) ; 12(10)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020459

ABSTRACT

Advances in functional imaging are supporting neurosurgery and radiotherapy for glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and invasion. In this review, we aimed at analyzing the biological mechanism of glioblastoma invasiveness and radioresistance in hypoxic niches of glioblastoma. We also discussed the link between hypoxia and radiation-induced radioresistance with activation of SRC proto-oncogene non-receptor tyrosine kinase, prospecting potential strategies to overcome the current limitation in glioblastoma treatment.

10.
J Pers Med ; 10(4)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080870

ABSTRACT

Cancer heterogeneity represents the main issue for defining an effective treatment in clinical practice, and the scientific community is progressively moving towards the development of more personalized therapeutic regimens. Radiotherapy (RT) remains a fundamental therapeutic treatment used for many neoplastic diseases, including breast cancer (BC), where high variability at the clinical and molecular level is known. The aim of this work is to apply the generalized linear quadratic (LQ) model to customize the radiant treatment plan for BC, by extracting some characteristic parameters of intrinsic radiosensitivity that are not generic, but may be exclusive for each cell type. We tested the validity of the generalized LQ model and analyzed the local disease-free survival rate (LSR) for breast RT treatment by using four BC cell cultures (both primary and immortalized), irradiated with clinical X-ray beams. BC cells were chosen on the basis of their receptor profiles, in order to simulate a differential response to RT between triple negative breast and luminal adenocarcinomas. The MCF10A breast epithelial cell line was utilized as a healthy control. We show that an RT plan setup based only on α and ß values could be limiting and misleading. Indeed, two other parameters, the doubling time and the clonogens number, are important to finely predict the tumor response to treatment. Our findings could be tested at a preclinical level to confirm their application as a variant of the classical LQ model, to create a more personalized approach for RT planning.

11.
Int J Mol Sci ; 21(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882850

ABSTRACT

Specific breast cancer (BC) subtypes are associated with bad prognoses due to the absence of successful treatment plans. The triple-negative breast cancer (TNBC) subtype, with estrogen (ER), progesterone (PR) and human epidermal growth factor-2 (HER2) negative receptor status, is a clinical challenge for oncologists, because of its aggressiveness and the absence of effective therapies. In addition, proton therapy (PT) represents an effective treatment against both inaccessible area located or conventional radiotherapy (RT)-resistant cancers, becoming a promising therapeutic choice for TNBC. Our study aimed to analyze the in vivo molecular response to PT and its efficacy in a MDA-MB-231 TNBC xenograft model. TNBC xenograft models were irradiated with 2, 6 and 9 Gy of PT. Gene expression profile (GEP) analyses and immunohistochemical assay (IHC) were performed to highlight specific pathways and key molecules involved in cell response to the radiation. GEP analysis revealed in depth the molecular response to PT, showing a considerable immune response, cell cycle and stem cell process regulation. Only the dose of 9 Gy shifted the balance toward pro-death signaling as a dose escalation which can be easily performed using proton beams, which permit targeting tumors while avoiding damage to the surrounding healthy tissue.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/radiation effects , Protons , Triple Negative Breast Neoplasms/radiotherapy , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Movement , Cell Proliferation , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Int J Mol Sci ; 21(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486205

ABSTRACT

Glioblastoma (GBM) is one of the most lethal types of tumor due to its high recurrence level in spite of aggressive treatment regimens involving surgery, radiotherapy and chemotherapy. Hypoxia is a feature of GBM, involved in radioresistance, and is known to be at the origin of treatment failure. The aim of this work was to assess the therapeutic potential of a new targeted c-SRC inhibitor molecule, named Si306, in combination with X-rays on the human glioblastoma cell lines, comparing normoxia and hypoxia conditions. For this purpose, the dose modifying factor and oxygen enhancement ratio were calculated to evaluate the Si306 radiosensitizing effect. DNA damage and the repair capability were also studied from the kinetic of γ-H2AX immunodetection. Furthermore, motility processes being supposed to be triggered by hypoxia and irradiation, the role of c-SRC inhibition was also analyzed to evaluate the migration blockage by wound healing assay. Our results showed that inhibition of the c-SRC protein enhances the radiotherapy efficacy both in normoxic and hypoxic conditions. These data open new opportunities for GBM treatment combining radiotherapy with molecularly targeted drugs to overcome radioresistance.


Subject(s)
Brain Neoplasms/enzymology , Glioblastoma/enzymology , Protein Kinase Inhibitors/pharmacology , src-Family Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Movement , Cell Survival , DNA Damage , Drug Screening Assays, Antitumor , Histones/metabolism , Humans , Hypoxia , Kinetics , Microscopy, Fluorescence , Neoplasm Recurrence, Local/drug therapy , Prognosis , Radiation, Ionizing , Radiotherapy , X-Rays , src-Family Kinases/metabolism
13.
PLoS One ; 15(5): e0233258, 2020.
Article in English | MEDLINE | ID: mdl-32442228

ABSTRACT

The purpose of this paper is to characterize the skin deterministic damage due to the effect of proton beam irradiation in mice occurred during a long-term observational experiment. This study was initially defined to evaluate the insurgence of myelopathy irradiating spinal cords with the distal part of a Spread-out Bragg peak (SOBP). To the best of our knowledge, no study has been conducted highlighting high grades of skin injury at the dose used in this paper. Nevertheless these effects occurred. In this regard, the experimental evidence of significant insurgence of skin injury induced by protons using a SOBP configuration will be shown. Skin damages were classified into six scores (from 0 to 5) according to the severity of the injuries and correlated to ED50 (i.e. the radiation dose at which 50% of animals show a specific score) at 40 days post-irradiation (d.p.i.). The effects of radiation on the overall animal wellbeing have been also monitored and the severity of radiation-induced skin injuries was observed and quantified up to 40 d.p.i.


Subject(s)
Proton Therapy/adverse effects , Radiation Injuries/pathology , Skin/radiation effects , Animals , Disease Models, Animal , Dose-Response Relationship, Radiation , Injury Severity Score , Mice
14.
Int J Mol Sci ; 20(21)2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31652849

ABSTRACT

The improvement of diagnostic techniques and the efficacy of new therapies in clinical practice have allowed cancer patients to reach a higher chance to be cured together with a better quality of life. However, tumors still represent the second leading cause of death worldwide. On the contrary, chemotherapy and radiotherapy (RT) still lack treatment plans which take into account the biological features of tumors and depend on this for their response to treatment. Tumor cells' response to RT is strictly-connected to their radiosensitivity, namely, their ability to resist and to overcome cell damage induced by ionizing radiation (IR). For this reason, radiobiological research is focusing on the ability of chemical compounds to radiosensitize cancer cells so to make them more responsive to IR. In recent years, the interests of researchers have been focused on natural compounds that show antitumoral effects with limited collateral issues. Moreover, nutraceuticals are easy to recover and are thus less expensive. On these bases, several scientific projects have aimed to test also their ability to induce tumor radiosensitization both in vitro and in vivo. The goal of this review is to describe what is known about the role of nutraceuticals in radiotherapy, their use and their potential application.


Subject(s)
Dietary Supplements , Neoplasms/radiotherapy , Radiation-Sensitizing Agents/administration & dosage , Radiotherapy/methods , Animals , Humans
15.
Int J Mol Sci ; 20(19)2019 09 24.
Article in English | MEDLINE | ID: mdl-31554327

ABSTRACT

Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proton Therapy , src-Family Kinases/antagonists & inhibitors , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Gene Expression Profiling , Glioblastoma/metabolism , Glioblastoma/therapy , Humans , Inhibitory Concentration 50 , Mice , Radiation Tolerance/drug effects , Xenograft Model Antitumor Assays
16.
Sci Rep ; 9(1): 11134, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31366901

ABSTRACT

In breast cancer (BC) care, radiotherapy is considered an efficient treatment, prescribed both for controlling localized tumors or as a therapeutic option in case of inoperable, incompletely resected or recurrent tumors. However, approximately 90% of BC-related deaths are due to the metastatic tumor progression. Then, it is strongly desirable to improve tumor radiosensitivity using molecules with synergistic action. The main aim of this study is to develop curcumin-loaded solid nanoparticles (Cur-SLN) in order to increase curcumin bioavailability and to evaluate their radiosensitizing ability in comparison to free curcumin (free-Cur), by using an in vitro approach on BC cell lines. In addition, transcriptomic and metabolomic profiles, induced by Cur-SLN treatments, highlighted networks involved in this radiosensitization ability. The non tumorigenic MCF10A and the tumorigenic MCF7 and MDA-MB-231 BC cell lines were used. Curcumin-loaded solid nanoparticles were prepared using ethanolic precipitation and the loading capacity was evaluated by UV spectrophotometer analysis. Cell survival after treatments was evaluated by clonogenic assay. Dose-response curves were generated testing three concentrations of free-Cur and Cur-SLN in combination with increasing doses of IR (2-9 Gy). IC50 value and Dose Modifying Factor (DMF) was measured to quantify the sensitivity to curcumin and to combined treatments. A multi-"omic" approach was used to explain the Cur-SLN radiosensitizer effect by microarray and metobolomic analysis. We have shown the efficacy of the Cur-SLN formulation as radiosensitizer on three BC cell lines. The DMFs values, calculated at the isoeffect of SF = 50%, showed that the Luminal A MCF7 resulted sensitive to the combined treatments using increasing concentration of vehicled curcumin Cur-SLN (DMF: 1,78 with 10 µM Cur-SLN.) Instead, triple negative MDA-MB-231 cells were more sensitive to free-Cur, although these cells also receive a radiosensitization effect by combination with Cur-SLN (DMF: 1.38 with 10 µM Cur-SLN). The Cur-SLN radiosensitizing function, evaluated by transcriptomic and metabolomic approach, revealed anti-oxidant and anti-tumor effects. Curcumin loaded- SLN can be suggested in future preclinical and clinical studies to test its concomitant use during radiotherapy treatments with the double implications of being a radiosensitizing molecule against cancer cells, with a protective role against IR side effects.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Curcumin/pharmacology , Lipids/administration & dosage , Nanoparticles/administration & dosage , Radiation-Sensitizing Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Drug Carriers/administration & dosage , Drug Delivery Systems/methods , Female , Humans , MCF-7 Cells , Particle Size
17.
Cancer Genomics Proteomics ; 16(4): 257-266, 2019.
Article in English | MEDLINE | ID: mdl-31243106

ABSTRACT

BACKGROUND/AIM: Radiation therapy (RT) represents a therapeutic option in breast cancer (BC). Even if a great number of BC patients receive RT, not all of them report benefits, due to radioresistance that gets activated through several factors, such as the hormone receptor status. Herein, we analyzed the gene expression profiles (GEP) induced by RT in triple-negative BC (TNBC) MDA-MB-231, to study signalling networks involved in radioresistance. MATERIALS AND METHODS: GEP of MDA-MB-231 BC cells treated with a high dose of radiation, went through cDNA microarray analysis. In addition, to examine the cellular effects induced by RT, analyses of morphology and clonogenic evaluation were also conducted. RESULTS: A descriptive report of GEP and pathways induced by IR is reported from our microarray data. Moreover, the MDA-MB-231 Radioresistent Cell Fraction (RCF) selected, included specific molecules able to drive radioresistance. CONCLUSION: In summary, our data highlight, the RT response of TNBC MDA-MB-231 cell line at a transcriptional level, in terms of activating radioresistance in these cells, as a model of late-stage BC.


Subject(s)
Radiation, Ionizing , Transcriptome/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/radiotherapy , Cell Line, Tumor , Female , Humans , Triple Negative Breast Neoplasms/pathology
18.
J Radiat Res ; 60(4): 451-465, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31135901

ABSTRACT

Breast cancer (BC) is the most common cancer in women, highly heterogeneous at both the clinical and molecular level. Radiation therapy (RT) represents an efficient modality to treat localized tumor in BC care, although the choice of a unique treatment plan for all BC patients, including RT, may not be the best option. Technological advances in RT are evolving with the use of charged particle beams (i.e. protons) which, due to a more localized delivery of the radiation dose, reduce the dose administered to the heart compared with conventional RT. However, few data regarding proton-induced molecular changes are currently available. The aim of this study was to investigate and describe the production of immunological molecules and gene expression profiles induced by proton irradiation. We performed Luminex assay and cDNA microarray analyses to study the biological processes activated following irradiation with proton beams, both in the non-tumorigenic MCF10A cell line and in two tumorigenic BC cell lines, MCF7 and MDA-MB-231. The immunological signatures were dose dependent in MCF10A and MCF7 cell lines, whereas MDA-MB-231 cells show a strong pro-inflammatory profile regardless of the dose delivered. Clonogenic assay revealed different surviving fractions according to the breast cell lines analyzed. We found the involvement of genes related to cell response to proton irradiation and reported specific cell line- and dose-dependent gene signatures, able to drive cell fate after radiation exposure. Our data could represent a useful tool to better understand the molecular mechanisms elicited by proton irradiation and to predict treatment outcome.


Subject(s)
Breast Neoplasms/radiotherapy , Breast/radiation effects , Protons , Cell Line, Tumor , DNA, Complementary/radiation effects , Dose-Response Relationship, Radiation , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Inflammation , MCF-7 Cells , Oligonucleotide Array Sequence Analysis , Phenotype , Proton Therapy , Radiation Tolerance/genetics , Radiotherapy
19.
Br J Radiol ; 91(1089): 20170934, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29888960

ABSTRACT

OBJECTIVE: Technological advances in radiation therapy are evolving with the use of hadrons, such as protons, indicated for tumors where conventional radiotherapy does not give significant advantages or for tumors located in sensitive regions, which need the maximum of dose-saving of the surrounding healthy tissues. The genomic response to conventional and non-conventional linear energy transfer exposure is a poor investigated topic and became an issue of radiobiological interest. The aim of this work was to analyze and compare molecular responses in term of gene expression profiles, induced by electron and proton irradiation in breast cancer cell lines. METHODS: We studied the gene expression profiling differences by cDNA microarray activated in response to electron and proton irradiation with different linear energy transfer values, among three breast cell lines (the tumorigenic MCF7 and MDA-MB-231 and the non-tumorigenic MCF10A), exposed to the same sublethal dose of 9 Gy. RESULTS: Gene expression profiling pathway analyses showed the activation of different signaling and molecular networks in a cell line and radiation type-dependent manner. MCF10A and MDA-MB-231 cell lines were found to induce factors and pathways involved in the immunological process control. CONCLUSION: Here, we describe in a detailed way the gene expression profiling and pathways activated after electron and proton irradiation in breast cancer cells. Summarizing, although specific pathways are activated in a radiation type-dependent manner, each cell line activates overall similar molecular networks in response to both these two types of ionizing radiation. Advances in knowledge: In the era of personalized medicine and breast cancer target-directed intervention, we trust that this study could drive radiation therapy towards personalized treatments, evaluating possible combined treatments, based on the molecular characterization.


Subject(s)
Breast Neoplasms/genetics , Electrons/therapeutic use , Gene Expression Profiling , Proton Therapy , Adenocarcinoma/genetics , Adenocarcinoma/radiotherapy , Breast Neoplasms/metabolism , Breast Neoplasms/radiotherapy , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/radiotherapy , Cell Line , Cell Line, Tumor/radiation effects , Gene Expression , Humans , Linear Energy Transfer , Oligonucleotide Array Sequence Analysis , Precision Medicine , Radiation Tolerance
20.
Anticancer Res ; 38(5): 2707-2715, 2018 05.
Article in English | MEDLINE | ID: mdl-29715090

ABSTRACT

BACKGROUND/AIM: In breast cancer (BC) care, radiation therapy (RT) is an efficient treatment to control localized tumor. Radiobiological research is needed to understand molecular differences that affect radiosensitivity of different tumor subtypes and the response variability. The aim of this study was to analyze gene expression profiling (GEP) in primary BC cells following irradiation with doses of 9 Gy and 23 Gy delivered by intraoperative electron radiation therapy (IOERT) in order to define gene signatures of response to high doses of ionizing radiation. MATERIALS AND METHODS: We performed GEP by cDNA microarrays and evaluated cell survival after IOERT treatment in primary BC cell cultures. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to validate candidate genes. RESULTS: We showed, for the first time, a 4-gene and a 6-gene signature, as new molecular biomarkers, in two primary BC cell cultures after exposure at 9 Gy and 23 Gy respectively, for which we observed a significantly high survival rate. CONCLUSION: Gene signatures activated by different doses of ionizing radiation may predict response to RT and contribute to defining a personalized biological-driven treatment plan.


Subject(s)
Breast Neoplasms/genetics , Electrons/therapeutic use , Gene Expression Regulation, Neoplastic/radiation effects , Radiotherapy, High-Energy , Transcriptome , Biomarkers, Tumor , Breast Neoplasms/pathology , DNA, Complementary/genetics , Dose-Response Relationship, Radiation , Female , Humans , Intraoperative Care , Radiation Tolerance , Real-Time Polymerase Chain Reaction , Tissue Array Analysis , Tumor Cells, Cultured , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL