Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Membranes (Basel) ; 12(12)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557143

ABSTRACT

In this work, the chronopotentiometric responses, pH changes, and current-voltage (I-V) characteristics of bipolar membrane (BPM)/LiCl-organic solvent systems were measured and compared with those of the BPM/LiCl-water system. Monohydric alcohols, polyhydric alcohols, and amides were used as organic solvents. The chronopotentiograms and pH changes supported that the organic solvents can dissociate into cations and anions at the BPM interface. It is found that amides cannot dissociate easily at the BPM compared with alcohols. The I-V characteristics showed that both the viscosity and acid-base property of organic solvents substantially influences the dissociation behaviors in addition to the autoprotolysis constant and relative permittivity of the solvents.

2.
ACS Appl Mater Interfaces ; 5(13): 6225-31, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23763449

ABSTRACT

The graphene nanoribbon (GNR)/carbon composite nanofiber yarns were prepared by electrospinning from poly(acrylonitrile) (PAN) containing graphene oxide nanoribbons (GONRs), and successive twisting and carbonization. The electrospinning process can exert directional shear force coupling with the external electric field to the flow of the spinning solution. During electrospinning, the well-dispersed GONRs were highly oriented along the fiber axis in an electrified thin liquid jet. The addition of GONRs at a low weight fraction significantly improved the mechanical properties of the composite nanofiber yarns. In addition, the carbonization of the matrix polymer enhanced not only the mechanical but also the electrical properties of the composites. The electrical conductivity of the carbonized composite yarns containing 0.5 wt % GONR showed the maximum value of 165 S cm(-1). It is larger than the maximum value of the reported electrospun carbon composite yarns. Interestingly, it is higher than the conductivities of both the PAN-based pristine CNF yarns (77 S cm(-1)) and the monolayer GNRs (54 S cm(-1)). These results and Raman spectroscopy supported the hypothesis that the oriented GONRs contained in the PAN nanofibers effectively functioned as not only the 1-D nanofiller but also the nanoplatelet promoter of stabilization and template agent for the carbonization.

3.
Langmuir ; 27(24): 14716-20, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22098173

ABSTRACT

This letter reports the enhancing effects of a nanofiber network structure on stimuli-responsive wettability switching. Thermoresponsive coatings composed of nanofibers were prepared by electrospinning from thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAAm). The nanofiber coatings showed a large amplitude of thermoresponsive change in the wettability from hydrophilic to hydrophobic states compared to a smooth cast film. In particular, the combination of the surface chemistry and unique topology of the electrospun nanofiber coatings enables a transition from the Wenzel state to the metastable Cassie-Baxter state with an increase in temperature and consequently an enhanced amplitude of change in the water contact angles: the apparent contact angle differences between 25 and 50 °C are Δθ*(25-50 °C )= 108 and 10° for the nanofiber coatings with a diameter of 830 nm and a smooth cast film, respectively. The fabrication of the 3D nanofiber network structure by electrospinning from stimuli-responsive materials is a promising option for highly responsive surfaces in wettability.

4.
ACS Appl Mater Interfaces ; 3(2): 469-75, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21268647

ABSTRACT

Multiwalled carbon nanotube (MWNT)/poly(vinyl butyral) (PVB) composite nanofibers were prepared by electrospinning, successive twisting and heat treatment. The MWNTs were highly oriented in an electrified thin jet during electrospinning. The heat treatment of the twisted electrospun nanofiber yarns produced the characteristics of the CNT in the composite nanofiber yarns and enhanced their electrical properties, mechanical properties, and thermal properties. The electrical conductivity of the heated yarn was significantly enhanced and showed the maximum value of 154 S cm(-1) for the yarn heated at 400 °C. It is an order of magnitude higher than other electrospun CNT composite materials. These results demonstrated that the novel top-down process based on electrospinning, twisting, and heat treatment provide a promising option for simple and large-scale manufacture of CNT assemblies.

5.
ACS Nano ; 4(5): 2730-4, 2010 May 25.
Article in English | MEDLINE | ID: mdl-20415426

ABSTRACT

Solid-state and flexible zinc carbon (or Leclanche) batteries are fabricated using a combination of functional nanostructured materials for optimum performance. Flexible carbon nanofiber mats obtained by electrospinning are used as a current collector and cathode support for the batteries. The cathode layer consists of manganese oxide particles combined with single-walled carbon nanotubes for improved conductivity. A polyethylene oxide layer containing titanium oxide nanoparticles forms the electrolyte layer, and a thin zinc foil is used as the anode. The battery is shown to retain its performance under mechanically stressed conditions. The results show that the above configuration can achieve solid-state mechanical flexibility and increased shelf life with little sacrifice in performance.

6.
Biotechnol Prog ; 25(5): 1379-86, 2009.
Article in English | MEDLINE | ID: mdl-19585552

ABSTRACT

Insulin transport phenomena across a series of porous charged membranes were studied at two pH conditions (pH 3.3 and pH 7.4) in this article. The membranes were prepared by pore-surface modification of porous poly(acrylonitrile) (PAN) membranes by grafting with weak acidic and basic functional groups. The insulin partition coefficient K between the membrane and solution was estimated from the equilibrium adsorption amount in the batch adsorption experiment. The insulin effective diffusion coefficient D inside the membrane was determined as a fitting parameter by matching the diffusion model with the experimental data of the diffusion measurement. Both K and D correlated well with the charge properties of the insulin and membrane: when the insulin and membrane carried opposite net charge, the partition coefficient showed relatively larger values, while the effective diffusion coefficient was reduced. The insulin permeability coefficient P obtained from the experimental results agreed with that estimated from the partition coefficient and effective diffusion coefficient. These results suggested that the combined effects of the solubility and diffusivity on the permeability coefficient complicated the relationship between the permeability and the charge properties of the insulin and membrane. Additionally, our calculation supported that insulin permeability was reduced by the boundary layer between the membrane and solution.


Subject(s)
Insulin/chemistry , Membranes, Artificial , Recombinant Proteins/chemistry , Diffusion , Humans , Hydrogen-Ion Concentration , Permeability , Porosity , Protein Transport , Static Electricity
7.
J Colloid Interface Sci ; 309(2): 272-8, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17336319

ABSTRACT

Membrane potential measurement has been widely used for the characterization of ionic membranes such as ion-exchange membranes without solvent permeability. However, there have been few studies on membrane potentials across pressure-driven processes such as reverse osmosis (RO) membranes with solvent permeability. In the present study, the membrane potential across RO membranes in NaCl and MgCl2 under the pressure gradient, DeltaP=0-0.3 MPa, was measured. The experimental results were analyzed by the theoretical model based on the Donnan equilibrium and the extended Nernst-Planck flux equation considering the pressure effect. The theoretical values agreed well with the experimental ones. This indicates that membrane potential is useful for characterizing the effective charge density of the active layer of RO membranes under pressure gradient.

8.
J Colloid Interface Sci ; 310(2): 678-81, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17359992

ABSTRACT

Cationic biopolymer nanofiber fabrics were prepared from a chitosan/poly(ethylene oxide) blend solution by electrospray deposition. Their electrokinetic properties and DNA adsorption behavior were analyzed as a function of pH. The zeta potential was determined from streaming potential/streaming current measurements. The adsorption of DNA onto the fabrics was investigated by spectrophotoscopy. The adsorption behavior of DNA correlated well with the electrokinetic properties of the fabrics. This revealed that the electrokinetic approach was a useful option for characterization of novel nanofiber assemblies made by the electrostatic spray process. In addition, these results provided fundamental information about chitosan nanofiber fabrics for both biomedical and analytical applications.


Subject(s)
Chitosan/chemistry , DNA/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Adsorption , Animals , Electrochemistry , Kinetics , Nanostructures/ultrastructure , Salmon
9.
J Colloid Interface Sci ; 300(1): 442-5, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16643944

ABSTRACT

In the present study, the effect of ion-exchange fiber fabric made by electrospray deposition (ESD) on water splitting in a composite bipolar membrane (CBM) was investigated. Cation- and anion-exchange fiber (CEF and AEF) fabrics, which were composed of very thin fibers, were prepared by ESD and postdeposition chemical modification and then used as the intermediate layer of a CBM. The current-voltage characteristics under reverse bias conditions showed that the AEF fabrics enhanced water splitting. The water dissociation is accelerated by the AEF fabric, which contains both tertiary pyridyl groups and quaternary pyridinium groups and has a high specific surface area. On the other hand, the CEF fabric, which contains sulfonic acid groups and has an insufficient specific surface area, reduced water splitting. These results indicate that fiber fabric with catalytic activity and a high surface area obtained by ESD can improve the performance of a CBM.

10.
J Colloid Interface Sci ; 293(1): 143-50, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16019022

ABSTRACT

Ion-exchange fiber (IEF) fabrics were prepared by electrospray deposition (ESD) and post-deposition chemical modification of their surfaces. Nonwoven fibrous fabrics were obtained from the solutions of synthetic polymers-polystyrene (PS) and poly(4-vinylpyridine) (P4VP)-of various concentrations. The diameter of the fiber in the fabrics ranged from 600 nm to 1.70 microm. Cation- and anion-exchange fiber (CEF and AEF) fabrics were obtained from the sulfonation of PS fabrics and the quaternization of P4VP fabrics, respectively. These fabrics were thoroughly characterized by a series of techniques, such as scanning electron microscopy (SEM), permporometry, nitrogen adsorption measurements, and potentiometric titrations. The SEM images showed that the fabrics had a porous structure after their chemical modification. The mean pore size, porosity, and specific surface area of the flow-through pores were 1.67-3.53 microm, about 80%, and 13 m(2)/g, respectively. The ion-exchange capacity was in the range from 0.78 to 1.34 mmol/g. The AEF fabric, on the other hand, showed a high specific surface area, i.e., the Brunauer-Emmett-Teller (BET) surface area of 600 m(2)/g, due to the formation of much smaller pores on the surface of the fiber structure in the fabric. The secondary chemical modification of the nano-microfiber fabrics by ESD provides novel functional materials with a large adsorption capacity and a high catalytic activity.

11.
J Colloid Interface Sci ; 286(1): 288-93, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15848430

ABSTRACT

The membrane potential across anion-exchange membranes in H2SO4 and Na2SO4 solutions was measured, and the experimental results were fitted to the theory in the 2-1 electrolyte system based on the Donnan equilibrium and the Nernst-Planck flux equations. For the Na2SO4 solution, the Donnan potential makes a significant contribution to the membrane potential, but for the H2SO4 solution, the diffusion potential significantly contributes to the membrane potential. The diffusion potential has a greater contribution to the membrane potential across AEM-2 with a high water content than that across AEM-1. These results suggest that a proton with a high mobility can move without substantial influence of electrostatic interaction in a positively charged membrane.

12.
J Colloid Interface Sci ; 286(1): 414-6, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15848446

ABSTRACT

Organic/inorganic hybrid nano-microstructured coatings on insulated polymer films were prepared by electrospray deposition (ESD) from an acrylic resin/silica sol blend solution. The surface morphologies of the coated films were observed using scanning electron microscopy (SEM). The SEM images showed that a nano-microscaled fibrous structure was formed on the film. The fiber diameter decreased from 4.4 microm to 600 nm with the increase in the silica sol content. Energy-dispersive X-ray analysis also revealed that silica atoms were homogeneously distributed in the fibrous structure on the polymer film. These results indicated that the ESD method is potentially a useful option for producing nano-microstructured coatings on not only conductive, but also insulating surfaces.

13.
J Colloid Interface Sci ; 279(2): 484-92, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15464815

ABSTRACT

Nanostructured thin films were prepared by electrospray deposition (ESD) from poly(ethylene oxide) (PEO) aqueous solution. The surface morphologies of the deposited films were observed using scanning electron microscopy (SEM). The SEM images revealed the correlations between the morphologies and the ESD conditions. By changing the applied voltage and solution properties such as viscosity, surface tension, conductivity, and molecular weight, PEO thin films with diverse nanostructures--from nanospheres to nanofibers--were fabricated. It was also revealed that the addition of alcohols to polymer solution, which enables simultaneously changing the viscosity, the surface tension, and the conductivity, enhanced the formation of the fibrous structure. These results indicate that the ESD method is potentially a useful option for producing nanoengineered polymer surface.


Subject(s)
Alcohols/chemistry , Nanostructures/chemistry , Polyethylene Glycols/chemistry , Electric Conductivity , Membranes, Artificial , Microscopy, Electron, Scanning/methods , Molecular Weight , Static Electricity , Surface Properties , Surface Tension , Viscosity , Water/chemistry
14.
J Colloid Interface Sci ; 269(2): 336-40, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-14654393

ABSTRACT

Protein thin films were prepared by the electrospray deposition (ESD) method from aqueous solutions of alpha-lactalbumin (alpha-LA) at different concentrations, and their surface morphologies and biological activities were characterized. The surface morphologies of the deposited films were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM and AFM images showed that the film surfaces had a fine porous structure, in which the pore diameters ranged from 40 to 600 nm. The biological activities of the cross-linked protein films were tested by the mechanochemical method. The response to calcium ion (Ca(2+)) demonstrated that the biological activity of the films was preserved. These results indicate that the ESD method is potentially useful for the fabrication of active protein thin films. The freestanding protein thin films prepared by ESD and postdeposition cross-linking provide novel options for protein-based biomaterials.


Subject(s)
Lactalbumin/chemistry , Nanotechnology/methods , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biopolymers/chemistry , Biopolymers/metabolism , Calcium/chemistry , Calcium/metabolism , Cross-Linking Reagents/chemistry , Lactalbumin/metabolism , Lactalbumin/ultrastructure , Nanotechnology/instrumentation , Polylysine/chemistry , Polylysine/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...