Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(4)2021 01.
Article in English | MEDLINE | ID: mdl-33523951

ABSTRACT

Alternative means for drug delivery are needed to facilitate drug adherence and administration. Microneedles (MNs) have been previously investigated transdermally for drug delivery. To date, drug loading into MNs has been limited by drug solubility in the polymeric blend. We designed a highly drug-loaded MN patch to deliver macromolecules and applied it to the buccal area, which allows for faster delivery than the skin. We successfully delivered 1-mg payloads of human insulin and human growth hormone to the buccal cavity of swine within 30 s. In addition, we conducted a trial in 100 healthy volunteers to assess potential discomfort associated with MNs when applied in the oral cavity, identifying the hard palate as the preferred application site. We envisage that MN patches applied on buccal surfaces could increase medication adherence and facilitate the painless delivery of biologics and other drugs to many, especially for the pediatric and elderly populations.

2.
Glob Health Sci Pract ; 8(3): 582-595, 2020 09 30.
Article in English | MEDLINE | ID: mdl-33008865

ABSTRACT

As the current COVID-19 pandemic illustrates, not all hospitals and other patient care facilities are equipped with enough personal protective equipment to meet the demand in a crisis. Health care workers around the world use filtering facepiece respirators to protect themselves and their patients, yet during this global pandemic they are forced to reuse what are intended to be single-use masks. This poses a significant risk to these health care workers along with the people they are trying to protect. Ultraviolet germicidal irradiation (UVGI) has been validated previously as a method to effectively decontaminate these masks between use. However, not all facilities have access to the expensive commercial ultraviolet type C (UV-C) lamp decontamination equipment required for UVGI. UV-C bulbs are sitting idle in biosafety cabinets at universities and research facilities around the world that have been shuttered to slow the spread of COVID-19. These bulbs may also be available in existing medical centers where infectious diseases are commonly treated. We developed a method to modify existing light fixtures or create custom light fixtures that are compatible with new or existing UV-C bulbs. This system is scalable; can be created for less than US$50, on site and at the point of need; and leverages resources that are currently untapped and sitting unused in public and private research facilities during the pandemic. The freely accessible design can be easily modified for use around the world. Health care facilities can obtain this potentially lifesaving UVGI resource with minimal funds by collaborating with research facilities to obtain the UV-C meters and UV-C bulbs if they are unavailable from other sources. Although mask reuse is not ideal, we must do what we can in emergency situations to protect our health care workers responding to the pandemic and the communities they serve.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Decontamination/methods , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Respiratory Protective Devices , Ultraviolet Rays , COVID-19 , Humans , SARS-CoV-2
3.
J Biomech Eng ; 142(10)2020 10 01.
Article in English | MEDLINE | ID: mdl-32391560

ABSTRACT

Premature birth interrupts the development of the lung, resulting in functional deficiencies and the onset of complex pathologies, like bronchopulmonary dysplasia (BPD), that further decrease the functional capabilities of the immature lung. The dysregulation of molecular targets has been implicated in the presentation of BPD, but there is currently no method to correlate resultant morphological changes observed in tissue histology with these perturbations to differences in function throughout saccular and alveolar lung development. Lung compliance is an aggregate measure of the lung's mechanical properties that is highly sensitive to a number of molecular, cellular, and architectural characteristics, but little is known about compliance in the neonatal mouse lung due to measurement challenges. We have developed a novel method to quantify changes in lung volume and pressure to determine inspiratory and expiratory compliance throughout neonatal mouse lung development. The compliance measurements obtained were validated against compliance values from published studies using mature lungs following enzymatic degradation of the extracellular matrix (ECM). The system was then used to quantify changes in compliance that occurred over the entire span of neonatal mouse lung development. These methods fill a critically important gap connecting powerful mouse models of development and disease to measures of functional lung mechanics critical to respiration and enable insights into the genetic, molecular, and cellular underpinnings of BPD pathology to improve lung function in premature infants.


Subject(s)
Lung Compliance , Microfluidics , Humans , Infant, Newborn , Infant, Premature , Lung
4.
Nat Biomed Eng ; 4(5): 544-559, 2020 05.
Article in English | MEDLINE | ID: mdl-32341538

ABSTRACT

Monolayers of cancer-derived cell lines are widely used in the modelling of the gastrointestinal (GI) absorption of drugs and in oral drug development. However, they do not generally predict drug absorption in vivo. Here, we report a robotically handled system that uses large porcine GI tissue explants that are functionally maintained for an extended period in culture for the high-throughput interrogation (several thousand samples per day) of whole segments of the GI tract. The automated culture system provided higher predictability of drug absorption in the human GI tract than a Caco-2 Transwell system (Spearman's correlation coefficients of 0.906 and 0.302, respectively). By using the culture system to analyse the intestinal absorption of 2,930 formulations of the peptide drug oxytocin, we discovered an absorption enhancer that resulted in a 11.3-fold increase in the oral bioavailability of oxytocin in pigs in the absence of cellular disruption of the intestinal tissue. The robotically handled whole-tissue culture system should help advance the development of oral drug formulations and might also be useful for drug screening applications.


Subject(s)
Drug Compounding , Drug Evaluation, Preclinical , Robotics , Tissue Culture Techniques/methods , Administration, Oral , Animals , Biological Transport/drug effects , Caco-2 Cells , Humans , Intestinal Absorption , Jejunum/physiology , Oxytocin/administration & dosage , Oxytocin/pharmacokinetics , Oxytocin/pharmacology , Permeability , Reproducibility of Results , Swine , User-Computer Interface
5.
Nat Med ; 25(10): 1512-1518, 2019 10.
Article in English | MEDLINE | ID: mdl-31591601

ABSTRACT

Insulin and other injectable biologic drugs have transformed the treatment of patients suffering from diabetes1,2, yet patients and healthcare providers often prefer to use and prescribe less effective orally dosed medications3-5. Compared with subcutaneously administered drugs, oral formulations create less patient discomfort4, show greater chemical stability at high temperatures6, and do not generate biohazardous needle waste7. An oral dosage form for biologic medications is ideal; however, macromolecule drugs are not readily absorbed into the bloodstream through the gastrointestinal tract8. We developed an ingestible capsule, termed the luminal unfolding microneedle injector, which allows for the oral delivery of biologic drugs by rapidly propelling dissolvable drug-loaded microneedles into intestinal tissue using a set of unfolding arms. During ex vivo human and in vivo swine studies, the device consistently delivered the microneedles to the tissue without causing complete thickness perforations. Using insulin as a model drug, we showed that, when actuated, the luminal unfolding microneedle injector provided a faster pharmacokinetic uptake profile and a systemic uptake >10% of that of a subcutaneous injection over a 4-h sampling period. With the ability to load a multitude of microneedle formulations, the device can serve as a platform to orally deliver therapeutic doses of macromolecule drugs.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems , Needles , Animals , Equipment Design , Humans , Insulin/pharmacology , Swine
6.
Sci Transl Med ; 11(483)2019 03 13.
Article in English | MEDLINE | ID: mdl-30867322

ABSTRACT

Multigram drug depot systems for extended drug release could transform our capacity to effectively treat patients across a myriad of diseases. For example, tuberculosis (TB) requires multimonth courses of daily multigram doses for treatment. To address the challenge of prolonged dosing for regimens requiring multigram drug dosing, we developed a gastric resident system delivered through the nasogastric route that was capable of safely encapsulating and releasing grams of antibiotics over a period of weeks. Initial preclinical safety and drug release were demonstrated in a swine model with a panel of TB antibiotics. We anticipate multiple applications in the field of infectious diseases, as well as for other indications where multigram depots could impart meaningful benefits to patients, helping maximize adherence to their medication.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Delivery Systems , Stomach/drug effects , Tuberculosis/drug therapy , Animals , Anti-Bacterial Agents/therapeutic use , Antitubercular Agents/pharmacology , Delayed-Action Preparations , Dose-Response Relationship, Drug , Doxycycline/therapeutic use , Drug Delivery Systems/economics , Drug Liberation , Humans , Swine
7.
Adv Mater Technol ; 4(3): 1800490, 2019.
Article in English | MEDLINE | ID: mdl-32010758

ABSTRACT

Long-term implantation of biomedical electronics into the human body enables advanced diagnostic and therapeutic functionalities. However, most long-term resident electronics devices require invasive procedures for implantation as well as a specialized receiver for communication. Here, a gastric resident electronic (GRE) system that leverages the anatomical space offered by the gastric environment to enable residence of an orally delivered platform of such devices within the human body is presented. The GRE is capable of directly interfacing with portable consumer personal electronics through Bluetooth, a widely adopted wireless protocol. In contrast to the passive day-long gastric residence achieved with prior ingestible electronics, advancement in multimaterial prototyping enables the GRE to reside in the hostile gastric environment for a maximum of 36 d and maintain ≈15 d of wireless electronics communications as evidenced by the studies in a porcine model. Indeed, the synergistic integration of reconfigurable gastric-residence structure, drug release modules, and wireless electronics could ultimately enable the next-generation remote diagnostic and automated therapeutic strategies.

8.
Nat Commun ; 9(1): 2, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317618

ABSTRACT

The efficacy of antiretroviral therapy is significantly compromised by medication non-adherence. Long-acting enteral systems that can ease the burden of daily adherence have not yet been developed. Here we describe an oral dosage form composed of distinct drug-polymer matrices which achieved week-long systemic drug levels of the antiretrovirals dolutegravir, rilpivirine and cabotegravir in a pig. Simulations of viral dynamics and patient adherence patterns indicate that such systems would significantly reduce therapeutic failures and epidemiological modelling suggests that using such an intervention prophylactically could avert hundreds of thousands of new HIV cases. In sum, weekly administration of long-acting antiretrovirals via a novel oral dosage form is a promising intervention to help control the HIV epidemic worldwide.


Subject(s)
Anti-HIV Agents/administration & dosage , Drug Delivery Systems/methods , Heterocyclic Compounds, 3-Ring/administration & dosage , Pyridones/administration & dosage , Rilpivirine/administration & dosage , Administration, Oral , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/therapeutic use , Drug Evaluation, Preclinical , Heterocyclic Compounds, 3-Ring/pharmacokinetics , Heterocyclic Compounds, 3-Ring/therapeutic use , Humans , Models, Theoretical , Oxazines , Patient Compliance , Piperazines , Proof of Concept Study , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Rilpivirine/pharmacokinetics , Rilpivirine/therapeutic use , Swine
9.
J Control Release ; 268: 113-119, 2017 Dec 28.
Article in English | MEDLINE | ID: mdl-29051063

ABSTRACT

Ultrasound-mediated drug delivery in the gastrointestinal (GI) tract is a bourgeoning area of study. Localized, low-frequency ultrasound has recently been shown to enable significant enhancement in delivery of a broad set of active pharmaceutical ingredients including small molecules, proteins, and nucleic acids without any formulation or encapsulation of the therapeutic. Traditional chemical formulations are typically required to protect, stabilize, and enable the successful delivery of a given therapeutic. The use of ultrasound, however, may make delivery insensitive to the chemical formulation. This might open the door to chemical formulations being developed to address other properties besides the deliverability of a therapeutic. Instead, chemical formulations could potentially be developed to achieve novel pharmacokinetics, without consideration of that particular formulation's ability to penetrate the mucus barrier passively. Here we investigated the effect of permeant size, charge, and the presence of chemical penetration enhancers on delivery to GI tissue using ultrasound. Short ultrasound treatments enabled delivery of large permeants, including microparticles, deep into colonic tissue ex vivo. Delivery was relatively independent of size and charge but did depend on conformation, with regular, spherical particles being delivered to a greater extent than long-chain polymers. The subsequent residence time of model permeants in tissue after ultrasound-mediated delivery was found to depend on size, with large microparticles demonstrating negligible clearance from the local tissue 24h after delivery ex vivo. The dependence of clearance time on permeant size was further confirmed in vivo in mice using fluorescently labeled 3kDa and 70kDa dextran. The use of low-frequency ultrasound in the GI tract represents a novel tool for the delivery of a wide-range of therapeutics independent of formulation, potentially allowing for the tailoring of formulations to impart novel pharmacokinetic profiles once delivered into tissue.


Subject(s)
Colon/metabolism , Drug Delivery Systems , Ultrasonic Waves , Animals , Colon/ultrastructure , Dextrans/administration & dosage , Female , Intestinal Absorption , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Electron, Scanning , Microspheres , Permeability , Swine
10.
Gastroenterology ; 152(5): 1151-1160, 2017 04.
Article in English | MEDLINE | ID: mdl-28088460

ABSTRACT

BACKGROUND & AIMS: It is a challenge to deliver nucleic acids to gastrointestinal (GI) tissues due to their size and need for intracellular delivery. They are also extremely susceptible to degradation by nucleases, which are ubiquitous in the GI tract. We investigated whether ultrasound, which can permeabilize tissue through a phenomenon known as transient cavitation, can be used to deliver RNA to the colonic mucosa of living mice. METHODS: We investigated delivery of fluorescently labeled permeants to colon tissues of Yorkshire pigs ex vivo and mice in vivo. Colon tissues were collected and fluorescence was measured by confocal microscopy. We then evaluated whether ultrasound is effective in delivering small interfering (si)RNA to C57BL/6 mice with dextran sodium sulfate-induced colitis. Some mice were given siRNA against tumor necrosis factor (Tnf) mRNA for 6 days; colon tissues were collected and analyzed histologically and TNF protein levels measured by enzyme-linked immunosorbent assay. Feces were collected and assessed for consistency and occult bleeding. We delivered mRNA encoding firefly luciferase to colons of healthy C57BL/6 mice. RESULTS: Exposure of ex vivo pig colon tissues to 20 kHz ultrasound for 1 minute increased the level of delivery of 3 kDa dextran 7-fold compared with passive diffusion (P = .037); 40 kHz ultrasound application for 0.5 seconds increased the delivery 3.3-fold in living mice (P = .041). Confocal microscopy analyses of colon tissues from pigs revealed regions of punctuated fluorescent dextran signal, indicating intracellular delivery of macromolecules. In mice with colitis, ultrasound delivery of unencapsulated siRNA against Tnf mRNA reduced protein levels of TNF in colon tissues, compared with mice with colitis given siRNA against Tnf mRNA without ultrasound (P ≤ .014), and reduced features of inflammation (P ≤ 4.1 × 10-5). Separately, colons of mice administered an mRNA encoding firefly luciferase with ultrasound and the D-luciferin substrate had levels of bioluminescence 11-fold greater than colons of mice given the mRNA alone (P = .0025). Ultrasound exposures of 40 kHz ultrasound for 0.5 seconds were well tolerated, even in mice with acute colitis. CONCLUSIONS: Ultrasound can be used to deliver mRNAs and siRNAs to the colonic mucosa of mice and knock down expression of target mRNAs.


Subject(s)
Colitis/metabolism , Colon/metabolism , Intestinal Mucosa/metabolism , Permeability , RNA, Messenger/administration & dosage , RNA, Small Interfering/administration & dosage , Ultrasonography/methods , Animals , Colitis/chemically induced , Dextran Sulfate/adverse effects , Drug Delivery Systems , Luciferases, Firefly/genetics , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Sus scrofa , Swine , Tumor Necrosis Factor-alpha/metabolism
11.
Sci Transl Med ; 8(365): 365ra157, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27856796

ABSTRACT

Efforts at elimination of scourges, such as malaria, are limited by the logistic challenges of reaching large rural populations and ensuring patient adherence to adequate pharmacologic treatment. We have developed an oral, ultra-long-acting capsule that dissolves in the stomach and deploys a star-shaped dosage form that releases drug while assuming a geometry that prevents passage through the pylorus yet allows passage of food, enabling prolonged gastric residence. This gastric-resident, drug delivery dosage form releases small-molecule drugs for days to weeks and potentially longer. Upon dissolution of the macrostructure, the components can safely pass through the gastrointestinal tract. Clinical, radiographic, and endoscopic evaluation of a swine large-animal model that received these dosage forms showed no evidence of gastrointestinal obstruction or mucosal injury. We generated long-acting formulations for controlled release of ivermectin, a drug that targets malaria-transmitting mosquitoes, in the gastric environment and incorporated these into our dosage form, which then delivered a sustained therapeutic dose of ivermectin for up to 14 days in our swine model. Further, by using mathematical models of malaria transmission that incorporate the lethal effect of ivermectin against malaria-transmitting mosquitoes, we demonstrated that this system will boost the efficacy of mass drug administration toward malaria elimination goals. Encapsulated, gastric-resident dosage forms for ultra-long-acting drug delivery have the potential to revolutionize treatment options for malaria and other diseases that affect large populations around the globe for which treatment adherence is essential for efficacy.


Subject(s)
Antimalarials/administration & dosage , Drug Delivery Systems , Ivermectin/administration & dosage , Malaria/drug therapy , Stomach/drug effects , Administration, Oral , Animals , Capsules , Culicidae , Delayed-Action Preparations , Drug Liberation , Endoscopy , Finite Element Analysis , Humans , Malaria/transmission , Models, Theoretical , Polymers/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...