Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
2.
J Phys Chem Lett ; 14(14): 3581-3588, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37018477

ABSTRACT

Polymers are a class of materials that are highly challenging to deal with using first-principles methods. Here, we present an application of machine-learned interatomic potentials to predict structural and dynamical properties of dry and hydrated perfluorinated ionomers. An improved active-learning algorithm using a small number of descriptors allows to efficiently construct an accurate and transferable model for this multielemental amorphous polymer. Molecular dynamics simulations accelerated by the machine-learned potentials accurately reproduce the heterogeneous hydrophilic and hydrophobic domains formed in this material as well as proton and water diffusion coefficients under a variety of humidity conditions. Our results reveal pronounced contributions of Grotthuss chains consisting of two to three water molecules to the high proton mobility under strongly humidified conditions.

3.
ACS Appl Mater Interfaces ; 14(48): 53744-53754, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36416068

ABSTRACT

Chemically modified carbon supports for the cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) show considerable promise for boosting the oxygen reduction reaction. This study evaluated the ionomer distribution of Nafion ionomer thin films on nitrogen (N)-modified carbon surfaces along their depth direction. Neutron reflectivity (NR) measurements performed using the double-contrast technique with H2O and D2O revealed that the introduction of N functional groups to carbon thin films promoted ionomer adsorption onto the surface under wet conditions (22 °C, 85% relative humidity). Molecular dynamics (MD) simulations conducted to verify the origin of the robust contact between the ionomer and N-modified carbon surface revealed an ionomer adsorption mechanism on the N-modified carbon surfaces, which involved Coulomb interactions between the positively charged carbon surface and the ionomer side chains with negatively charged sulfonic acid groups. The positive surface charge, which was determined using the contents of the N functional groups estimated by X-ray photoelectron spectroscopy, was found to be sufficient as an impetus for ionomer adsorption. This strategy involving NR measurements and MD simulations can provide insights into the solid-ionomer interfacial structures in a cathode catalyst layer and can therefore be extensively employed in studies on PEFCs.

4.
Nat Commun ; 12(1): 4956, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34400643

ABSTRACT

In recent years, considerable research and development efforts are devoted to improving the performance of polymer electrolyte fuel cells. However, the power density and catalytic activities of these energy conversion devices are still far from being satisfactory for large-scale operation. Here we report performance enhancement via incorporation, in the cathode catalyst layers, of a ring-structured backbone matrix into ionomers. Electrochemical characterizations of single cells and microelectrodes reveal that high power density is obtained using an ionomer with high oxygen solubility. The high solubility allows oxygen to permeate the ionomer/catalyst interface and react with protons and electrons on the catalyst surfaces. Furthermore, characterizations of single cells and single-crystal surfaces reveal that the oxygen reduction reaction activity is enhanced owing to the mitigation of catalyst poisoning by sulfonate anion groups. Molecular dynamics simulations indicate that both the high permeation and poisoning mitigation are due to the suppression of densely layered folding of polymer backbones near the catalyst surfaces by the incorporated ring-structured matrix. These experimental and theoretical observations demonstrate that ionomer's tailored molecular design promotes local oxygen transport and catalytic reactions.

5.
Chem Asian J ; 16(9): 1092-1100, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33660942

ABSTRACT

Introduction of porosity into supramolecular gels endows soft materials with functionalities for molecular encapsulation, release, separation and conversion. Metal-organic polyhedra (MOPs), discrete coordination cages containing an internal cavity, have recently been employed as building blocks to construct polymeric gel networks with potential porosity. However, most of the materials can only be synthesized in organic solvents, and the examples of porous, MOP-based hydrogels are scarce. Here, we demonstrate the fabrication of porous hydrogels based on [Rh2 (OH-bdc)2 ]12 , a rhodium-based MOP containing hydroxyl groups on its periphery (OH-bdc=5-hydroxy-1,3-benzenedicarboxylate). By simply deprotonating [Rh2 (OH-bdc)2 ]12 with the base NaOH, the supramolecular polymerization between MOPs and organic linkers can be induced in the aqueous solution, leading to the kinetically controllable formation of hydrogels with hierarchical colloidal networks. When heating the deprotonated MOP, Nax [Rh24 (O-bdc)x (OH-bdc)24-x ], to induce gelation, the MOP was found to partially decompose, affecting the mechanical property of the resulting gels. By applying a post-synthetic deprotonation strategy, we show that the deprotonation degree of the MOP can be altered after the gel formation without serious decomposition of the MOPs. Gas sorption measurements confirmed the permanent porosity of the corresponding aerogels obtained from these MOP-based hydrogels, showing potentials for applications in gas sorption and catalysis.

6.
Nat Commun ; 11(1): 3859, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737298

ABSTRACT

Non-enzymatic proteins including antibodies function as biomarkers and are used as biopharmaceuticals in several diseases. Protein-responsive soft materials capable of the controlled release of drugs and proteins have potential for use in next-generation diagnosis and therapies. Here, we describe a supramolecular/agarose hydrogel composite that can release a protein in response to a non-enzymatic protein. A non-enzymatic protein-responsive system is developed by hybridization of an enzyme-sensitive supramolecular hydrogel with a protein-triggered enzyme activation set. In situ imaging shows that the supramolecular/agarose hydrogel composite consists of orthogonal domains of supramolecular fibers and agarose, which play distinct roles in protein entrapment and mechanical stiffness, respectively. Integrating the enzyme activation set with the composite allows for controlled release of the embedded RNase in response to an antibody. Such composite hydrogels would be promising as a matrix embedded in a body, which can autonomously release biopharmaceuticals by sensing biomarker proteins.


Subject(s)
Carbonic Anhydrase II/chemistry , Delayed-Action Preparations/chemical synthesis , Hydrogels/chemistry , Ribonucleases/chemistry , Sepharose/chemistry , Animals , Antibodies/chemistry , Avidin/chemistry , Biotin/chemistry , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemistry , Cattle , Enzyme Activation , Phase Transition , Rheology , Ribonucleases/antagonists & inhibitors , Sulfonamides/chemistry , Benzenesulfonamides
7.
Soft Matter ; 16(31): 7400-7413, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32699868

ABSTRACT

Steady-state flow and elastic behavior is investigated for the moderately concentrated binary suspensions of soft microgels (pastes) with chemically dissimilar surfaces, and various degrees of size- and stiffness disparities. The pastes of poly(N-isopropyl acrylamide) (N) and poly(N-isopropyl methacrylamide) (NM) microgels with different values of yield strain γc (γNc > γNMc) are employed as the components. For the single microgel pastes (φ ≈ 1 where φ is apparent volume fraction), the values of γc are governed by the chemical species of constituent polymer in microgel surface whereas γc is insensitive to cross-link density and particle size. We demonstrate that the binary N/NM pastes with large size disparity (RN/NM = DN/DNM < 0.26 where D is the microgel diameter) at low φN (φN: weight fraction of small N microgels) exhibit the peculiarities in several rheological aspects, i.e., the two-step yielding in steady-state flow, and their values of γc and equilibrium shear modulus (G0) being equivalent to those of the single large NM microgel paste. These peculiarities are attributed to the characteristic packing resulting from large size disparity in which all or almost of the small N microgels tend to be accommodated in the gap between the large NM microgels even in moderately concentrated state. This characteristic packing substantially masks the contribution of the small N microgels at low φN, explaining the φN-independent G0 and γc as well as the first yielding governed solely by the large NM microgels. The second yielding results from the emerged contribution of the small N microgels expelled out from the gap by the positional rearrangements after the first yielding. The binary homo-N/N pastes with the similarly large size disparity at low φsmall also exhibit the φsmall-independent values of G0, but they show one-step yielding, indicating that the two-step yielding requires not only sufficiently large size disparity but also chemical dissimilarity (different values of γc) between the two components.

8.
J Colloid Interface Sci ; 568: 165-175, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32088447

ABSTRACT

HYPOTHESIS: Suspensions of the poly(N-isopropylacrylamide) (PNIPAM) based temperature(T)-sensitive microgels can undergo colloidal gelation forming a three-dimensional sparse network-like structure in the hydrophobic and shrunken state of T > T* (T*: volume transition temperature), despite their considerably low particle volume fractions (<0.2). The effective surface charge density is expected to be a key factor governing the colloidal gelation and gel modulus. EXPERIMENTS: The combined analysis of the viscoelasticity and electrophoretic mobility (EPM) was performed varying systematically pH and ionic strength (I). The microgels containing the extremely small content of electrolyte (0.1 mol%) with the T* and swelling degree being insensitive to pH and I were employed to facilitate the exclusive analysis of their effects on colloidal gelation. FINDINGS: The results unambiguously reveal (1) that the gelation requires the adequate suppressions of the interparticle charge repulsion, and (2) that a reduction in the interparticle charge repulsion results in an increase in gel modulus by several orders of magnitude. The long-term linear creep behavior show that the colloidal gels are identified as a viscoelastic fluid with a long relaxation time and a high viscosity whereas they behave elastically at relatively short timescale in conventional oscillatory tests.

9.
Int J Biol Macromol ; 135: 959-968, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31136752

ABSTRACT

The structure and properties of natural sheep casing and collagen films with various crosslinking treatments have been investigated in detail to develop satisfied artificial casings prepared from collagen. The sheep casing consists of large number of thick collagen fibers oriented at ±45° from longitudinal direction with high-density interwoven network structure. The structural feature of sheep casing gave the special mouthfeel of 'cracking bite' of sausages. Whereas, layered structure filled with fine collagen fibrils and large gaps in collagen film results in poor mechanical properties and higher swelling ratio in water. Furthermore, a degree of denaturation of collagen during extraction process also lead to poor mechanical properties. After glutaraldehyde (GTA) and dehydrothermal (DHT) treatments, the formation of crosslinking improved mechanical properties of collagen films significantly and the tensile strength and tensile modulus increased more than three times compared with those of untreated collagen film in wet before and after boiling. The swelling ratio of treated collagen films also decreased dramatically. No obvious effects on denaturation of collagen film after GTA treatment, but the degree of denaturation of DHT treated collagen film increased slightly.


Subject(s)
Biological Products/chemistry , Chemical Phenomena , Collagen/chemistry , Membranes, Artificial , Molecular Structure , Animal Structures/chemistry , Animals , Cattle , Cross-Linking Reagents/chemistry , Mechanical Phenomena , Rheology , Sheep
10.
J Am Chem Soc ; 141(12): 4997-5004, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30835456

ABSTRACT

Living cells exhibit sophisticated functions because they contain numerous endogenous stimuli-responsive molecular systems that independently and cooperatively act in response to an external circumstance. On the other hand, artificial soft materials containing multiple stimuli-responsive molecular systems are still rare. Herein, we demonstrate a unique multicomponent hydrogel composed of a self-sorting double network prepared through a post-assembly fabrication (PAF) protocol. The PAF protocol allowed the construction of a well-ordered hydrogel with a dual-biomolecule response to two important biomolecules (adenosine triphosphate (ATP) and sarcosine). Such a hydrogel could not be prepared through a one-step mixing protocol. The resultant multicomponent hydrogel responded to ATP and sarcosine through gel-sol transition behavior programmed in an AND logic gate fashion. Finally, we applied the multicomponent hydrogel to the controlled release of an antibody.

11.
Chem Sci ; 10(47): 10833-10842, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-32110353

ABSTRACT

Spatial heterogeneity and gradients within porous materials are key for controlling their mechanical properties and mass/energy transport, both in biological and synthetic materials. However, it is still challenging to induce such complexity in well-defined microporous materials such as crystalline metal-organic frameworks (MOFs). Here we show a method to generate a continuous gradient of porosity over multiple length scales by taking advantage of the amorphous nature of supramolecular polymers based on metal-organic polyhedra (MOPs). First, we use time-resolved dynamic light scattering (TRDLS) to elucidate the mechanism of hierarchical self-assembly of MOPs into colloidal gels and to understand the relationship between the MOP concentrations and the architecture of the resulting colloidal networks. These features directly impact the viscoelastic response of the gels and their mechanical strength. We then show that gradients of stiffness and porosity can be created within the gel by applying centrifugal force at the point of colloidal aggregation. These results with the creation of asymmetric and graded pore configuration in soft materials could lead to the emergence of advanced properties that are coupled to asymmetric molecule/ion transport as seen in biological systems.

12.
Soft Matter ; 14(9): 1596-1607, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29411837

ABSTRACT

Dense suspensions of temperature (T)-sensitive poly(N-isopropyl acrylamide) (N) and poly(N-isopropyl methacrylamide) (NM) microgel mixtures with different volume transition temperatures (T and T, respectively; T < T) exhibit a characteristic T-dependent viscoelasticity due to T-induced changes in the type of interparticle interaction as well as the volume fraction of each gel. In the range of T < T, where the swollen microgels with repulsive interparticle interactions are densely packed, the equilibrium modulus (G) decreases upon heating due entirely to the packing effect, i.e., a reduction in the total volume fraction of the microgels (φ). At T > T where the attractive interparticle interactions between dehydrated and hydrophobic microgels emerge, the suspensions show solid-like elastic properties due to the network-like flocculation of the shrunken microgels (colloidal gelation), even when φ becomes considerably lower than the threshold for randomly close packing. The T-dependence of G shows a minimum at a characteristic temperature (TB; TB > T) due to the competition between the repulsive interparticle interactions from the packing effect and electrostatic force, and the attractive interactions from the hydrophobicity. The TB in N/NM mixture suspensions shifts to a higher value with a decrease in N content in the mixtures (XN), accompanied by a discontinuous-like change at a specific value of XN (XN*). The TB at every value of XN agrees approximately with the temperature where the total volume fraction of the attractive hydrophobic microgels is 0.3 regardless of microgel type (N or NM). The discontinuous-like variation in TB at XN* reflects the change in the network-like flocculation particles, from only attractive N microgels in the high XN regime, to the attractive N and NM microgel mixtures in the moderate XN regime. The requirement of the repulsive electrostatic force with an appropriate strength for the stability of the network-like flocculation is also demonstrated using the PNIPAM-co-fumaric acid (NF) microgel suspensions at various pH.

13.
Nat Nanotechnol ; 13(3): 267, 2018 03.
Article in English | MEDLINE | ID: mdl-29379206

ABSTRACT

In the version of this Article originally published online, in Fig. 4b, in the lower-right image, the value of r was incorrect; it should have read 'r = 0.72'. This has now been corrected in all versions of the Article.

14.
Nat Nanotechnol ; 13(2): 165-172, 2018 02.
Article in English | MEDLINE | ID: mdl-29311611

ABSTRACT

Novel soft materials should comprise multiple supramolecular nanostructures whose responses (for example, assembly and disassembly) to external stimuli can be controlled independently. Such multicomponent systems are present in living cells and control the formation and break-up of a variety of supramolecular assemblies made of proteins, lipids, DNA and RNA in response to external stimuli; however, artificial counterparts are challenging to make. Here, we present a hybrid hydrogel consisting of a self-sorting double network of nanofibres in which each network responds to an applied external stimulus independent of the other. The hydrogel can be made to change its mechanical properties and rates of release of encapsulated proteins by adding Na2S2O4 or bacterial alkaline phosphatase. Notably, the properties of the gel depend on the order in which the external stimuli are applied. Multicomponent hydrogels comprising orthogonal stimulus-responsive supramolecular assemblies would be suitable for designing novel adaptive materials.

15.
ACS Macro Lett ; 7(6): 641-645, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-35632970

ABSTRACT

Solvent-based deposition techniques for fabrication of organic field-effect transistors (OFETs) generally require orthogonal solvents for deposition of a conjugated polymer layer on a polymer gate insulator layer. Here, we found significantly reduced dissolution rate of the polymeric film in the same solvent after casting a homegeneous polymerization solution of para-bis(3-aminopropyl)hexaisobutyl-substituted T8 cage (1) with terephthalaldehyde. The limited dissolution rate in the solvent provided enough chance for fabrication of a regioregular poly(3-hexylthiophene-2,5-diyl) (P3HT) layer on the present polymer films without using an orthogonal solvent. The rheological properties indicate that physical interaction between the polymer chains provides the significantly reduced dissolution rate after the deposition onto a substrate without any cross-linking treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...