Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Cancer Drug Resist ; 7: 4, 2024.
Article in English | MEDLINE | ID: mdl-38318525

ABSTRACT

The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3ß in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3ß in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3ß as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3ß in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3ß has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.

2.
Cell Chem Biol ; 31(4): 792-804.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-37924814

ABSTRACT

Master transcription factors such as TP63 establish super-enhancers (SEs) to drive core transcriptional networks in cancer cells, yet the spatiotemporal regulation of SEs within the nucleus remains unknown. The nuclear pore complex (NPC) may tether SEs to the nuclear pore where RNA export rates are maximal. Here, we report that NUP153, a component of the NPC, anchors SEs to the NPC and enhances TP63 expression by maximizing mRNA export. This anchoring is mediated through protein-protein interaction between the intrinsically disordered regions (IDRs) of NUP153 and the coactivator BRD4. Silencing of NUP153 excludes SEs from the nuclear periphery, decreases TP63 expression, impairs cellular growth, and induces epidermal differentiation of squamous cell carcinoma. Overall, this work reveals the critical roles of NUP153 IDRs in the regulation of SE localization, thus providing insights into a new layer of gene regulation at the epigenomic and spatial level.

3.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139171

ABSTRACT

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Subject(s)
Neoplasms , Repressor Proteins , Humans , RNA Splicing Factors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Repressor Proteins/genetics , Alternative Splicing , Neoplasms/drug therapy , Neoplasms/genetics , Transcription Factor TFIIH/genetics , Transcription Factor TFIIH/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism
4.
Int J Oncol ; 63(2)2023 Aug.
Article in English | MEDLINE | ID: mdl-37387443

ABSTRACT

Hyperthermia is a promising approach for improving cancer treatment in combination with chemotherapy, radiotherapy and/or immunotherapy; however, its molecular mechanisms remain unclear. Although heat shock proteins (HSPs) are involved in hyperthermia via antigen presentation and immune activation, major HSPs including HSP90 are associated with cancer progression via tumor cell migration and metastasis. The present study showed that heat shock­inducible tumor small protein (HITS) could counteract the pro­migratory effects of HSPs in colorectal cancer (CRC) cells, which represents a novel function. Western blotting analysis revealed that overexpression of HITS increased the protein level of glycogen synthase kinase­3ß (GSK3ß) phosphorylated (p) at the serine 9 (pGSK3ßS9; inactive form) in HCT 116, RKO and SW480 CRC cells. GSK3ßS9 phosphorylation was reported to suppress migration in some cancer types; therefore, by using the wound healing assay, the present study revealed that HITS overexpression decreased the migration activity of CRC cells. Induction of HITS transcription was observed at 12 and 18 h after heat shock (HS) by using semi­quantitative reverse transcription­PCR analysis, followed by increased levels of pGSK3ßS9 protein at 24 and 30 h in CRC cells in western blotting. Thus, HS induced not only HSPs to promote cell migration, but also HITS to counteract the migratory activity of these HSPs in CRC cells. HITS knockdown in CRC cells subject to HS showed increased cell migration in wound healing assay, which was decreased by the GSK3ß inhibitor AR­A014418, confirming the anti­migratory effect of HITS via the deactivation of GSK3ß. The present findings indicated that the deactivation of GSK3ß sufficiently offset the pro­migratory effect of hyperthermia via major HSPs in CRC.


Subject(s)
Colorectal Neoplasms , Hyperthermia, Induced , Humans , Glycogen Synthase Kinase 3 beta , Heat-Shock Response , Heat-Shock Proteins/genetics , Neoplasm Proteins , Colorectal Neoplasms/genetics
5.
Gastric Cancer ; 26(3): 352-363, 2023 05.
Article in English | MEDLINE | ID: mdl-36695981

ABSTRACT

BACKGROUND: Peritoneal dissemination, most often seen in metastatic and/or recurrent gastric cancer, is an inoperable condition that lacks effective treatment. The use of molecular targeted drugs is also limited; therefore, identifying novel therapeutic targets and improving our understanding of this metastatic cancer are an urgent requirement. In this study, we focused on galectin-4, which is specifically expressed in poorly differentiated cells with high potential for peritoneal dissemination. METHODS: We knocked out the galectin-4 gene in NUGC4 cells using CRISPR/Cas9-mediated genome editing. Proliferation and peritoneal cancer formation in knockout cells were compared with those in wild-type and galectin-4 re-expressing cells. Western blotting and proximity ligation assays were performed to identify associated molecules affected by the expression of galectin-4. The effect of galectin-4 knockdown on cell proliferation and peritoneal metastasis was studied using a specific siRNA. Expression of galectin-4 in peritoneal metastatic tumors from 10 patients with gastric cancer was examined by immunohistochemistry. RESULTS: Suppression of galectin-4 expression reduced proliferation and peritoneal metastasis of malignant gastric cancer cells. Galectin-4 knockout and knockdown reduced the expression of activated c-MET and CD44. Galectin-4 was found to interact with several proteins on the cell surface, including CD44 and c-MET, via its carbohydrate-binding ability. Immunohistochemistry showed galectin-4 expression in peritoneal metastatic tumor cells in all patients examined. CONCLUSIONS: We clarified the role of galectin-4 in the development of peritoneal dissemination of poorly differentiated gastric cancer cells. Our data highlight the diagnostic and therapeutic potential of galectin-4 in the peritoneal dissemination of gastric cancer.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Peritoneal Neoplasms/secondary , Galectin 4/genetics , Immunohistochemistry , RNA, Small Interfering , Cell Line, Tumor
6.
J Natl Cancer Inst ; 115(2): 208-218, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36567450

ABSTRACT

BACKGROUND: Telomere dysfunction has been reported to be directly involved in carcinogenesis owing to chromosomal instability and immortalization; however, the clinicopathological significance of telomeres remains controversial. We have shown that telomere shortening occurs in normal-appearing duct cells at initiation and then continues during the progression of pancreatic cancer. In this study, we determined the clinicopathological and prognostic value of telomere length (TL) in cancer progression. METHODS: TL in both cancer cells and cancer-associated fibroblasts (CAFs) was analyzed by high-throughput quantitative fluorescence in situ hybridization using a previously reported cohort comprising 1434 cases of adenocarcinoma (ADC), squamous cell carcinoma (SCC), adenosquamous carcinoma, hepatocellular carcinoma, and renal cell carcinoma (RCC), which are known cancers with a statistically significantly low incidence of alternative lengthening of telomeres. Cases were divided into 2 groups as follows: longer and shorter telomeres, according to the median TL of cancer cells and CAFs. The statistical significance of TL in cancer cells and CAFs on clinicopathological characteristics and prognosis was analyzed. RESULTS: There was a close association between TL in cancer cells and CAFs. Longer telomeres in cancer cells and CAFs were associated with aggressive features such as advanced stage, high mitosis score and nuclear score, poorly differentiated cancer, and desmoplastic stroma in ADC. Furthermore, a longer TL was an independent prognostic factor for ADC, SCC, and RCC. CONCLUSIONS: Longer telomeres are associated with worse prognosis in ADC, SCC, and RCC. Thus, TL is a novel biomarker for the diagnosis of aggressive cancers with poor prognoses.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Renal Cell , Carcinoma, Squamous Cell , Kidney Neoplasms , Liver Neoplasms , Humans , Cancer-Associated Fibroblasts/pathology , In Situ Hybridization, Fluorescence , Prognosis , Telomere Shortening , Telomere , Carcinoma, Squamous Cell/pathology , Liver Neoplasms/pathology , Telomere Homeostasis
7.
Oncotarget ; 13: 785-799, 2022.
Article in English | MEDLINE | ID: mdl-35677533

ABSTRACT

Interleukin-33 (IL-33) is an IL-1 family cytokine known to promote T-helper (Th) type 2 immune responses that are often deregulated in gastric cancer (GC). IL-33 is overexpressed in human gastric tumours suggesting a role in driving GC progression although a causal link has not been proven. Here, we investigated the impact of IL-33 genetic deficiency in the well-characterized gp130 F/F mouse model of GC. Expression of IL-33 (and it's cognate receptor, ST2) was increased in human and mouse GC progression. IL-33 deficient gp130 F/F /Il33 -/- mice had reduced gastric tumour growth and reduced recruitment of pro-tumorigenic myeloid cells including key mast cell subsets and type-2 (M2) macrophages. Cell sorting of gastric tumours revealed that IL-33 chiefly localized to gastric (tumour) epithelial cells and was absent from tumour-infiltrating immune cells (except modest IL-33 enrichment within CD11b+ CX3CR1+CD64+MHCII+ macrophages). By contrast, ST2 was absent from gastric epithelial cells and localized exclusively within the (non-macrophage) immune cell fraction together with mast cell markers, Mcpt1 and Mcpt2. Collectively, we show that IL-33 is required for gastric tumour growth and provide evidence of a likely mechanism by which gastric epithelial-derived IL-33 drives mobilization of tumour-promoting inflammatory myeloid cells.


Subject(s)
Interleukin-33 , Stomach Neoplasms , Animals , Cytokine Receptor gp130 , Cytokines , Humans , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33/metabolism , Mice , Mice, Knockout , Myeloid Cells/metabolism , Signal Transduction , Stomach Neoplasms/pathology
8.
Cells ; 11(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35159127

ABSTRACT

Epigenetic deregulation plays an essential role in colorectal cancer progression. Bromodomains are epigenetic "readers" of histone acetylation. Bromodomain-containing protein 4 (BRD4) plays a pivotal role in transcriptional regulation and is a feasible drug target in cancer cells. Disease-specific elevation of nucleoporin, a component of the nuclear pore complex (NPC), is a determinant of cancer malignancy, but BRD4-driven changes of NPC composition remain poorly understood. Here, we developed novel aminocyclopropenones and investigated their biological effects on cancer cell growth and BRD4 functions. Among 21 compounds developed here, we identified aminocyclopropenone 1n (ACP-1n) with the strongest inhibitory effects on the growth of the cancer cell line HCT116. ACP-1n blocked BRD4 functions by preventing its phase separation ability both in vitro and in vivo, attenuating the expression levels of BRD4-driven MYC. Notably, ACP-1n significantly reduced the nuclear size with concomitant suppression of the level of the NPC protein nucleoporin NUP210. Furthermore, NUP210 is in a BRD4-dependent manner and silencing of NUP210 was sufficient to decrease nucleus size and cellular growth. In conclusion, our findings highlighted an aminocyclopropenone compound as a novel therapeutic drug blocking BRD4 assembly, thereby preventing BRD4-driven oncogenic functions in cancer cells. This study facilitates the development of the next generation of effective and potent inhibitors of epigenetic bromodomains and extra-terminal (BET) protein family.


Subject(s)
Cell Cycle Proteins , Colorectal Neoplasms , Nuclear Pore Complex Proteins , Transcription Factors , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Proliferation , Colorectal Neoplasms/drug therapy , Humans , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
9.
J Pathol ; 257(2): 172-185, 2022 06.
Article in English | MEDLINE | ID: mdl-35094384

ABSTRACT

Recent evidence indicates that RNA-dependent RNA polymerase (RdRP) activity of human telomerase reverse transcriptase (hTERT) regulates expression of target genes and is directly involved in tumor formation in a telomere-independent manner. Non-canonical function of hTERT has been considered as a therapeutic target for cancer therapy. We have previously shown that hTERT phosphorylation at threonine 249 (p-hTERT), which promotes RdRP activity, is an indicator of an aggressive phenotype and poor prognosis in liver and pancreatic cancers, using two cohorts with small sample sizes with polyclonal p-hTERT antibody. To clarify the clinical relevance of p-hTERT, we developed a specific monoclonal antibody and determined the diagnostic and prognostic value of p-hTERT in cancer specimens using a large cohort. A monoclonal antibody for phosphorylated hTERT (p-hTERT) at threonine 249 was developed and validated. The antibody was used for the immunohistochemical staining of formalin-fixed, paraffin-embedded specimens from 1523 cases of lung, colon, stomach, pancreatic, liver, breast, and kidney cancers. We detected elevated p-hTERT expression levels in cases with a high mitotic activity, high pathological grade, and high nuclear pleomorphism. Elevated p-hTERT expression was an independent prognostic factor for lung, pancreatic, and liver cancers. Furthermore, p-hTERT expression was associated with immature and aggressive features, such as adenosquamous carcinoma (lung and pancreas), invasive type of cancer (lung), high serum alpha-fetoprotein level (liver), and triple-negative status (breast). In conclusion, RdRP activity indicated by p-hTERT expression predicts aggressive cancer phenotypes in various types of cancer. Thus, p-hTERT is a novel biomarker for the diagnosis of aggressive cancers with a poor prognosis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Neoplasms , Telomerase , Antibodies, Monoclonal , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Humans , Neoplasms/genetics , Neoplasms/pathology , Phosphorylation , Prognosis , RNA-Dependent RNA Polymerase , Telomerase/genetics , Threonine/metabolism
10.
Micromachines (Basel) ; 12(11)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34832842

ABSTRACT

Microfluidics is applied in biotechnology research via the creation of microfluidic channels and reaction vessels. Filters are considered to be able to simulate microfluidics. A typical example is the cell culture insert, which comprises two vessels connected by a filter. Cell culture inserts have been used for years to study cell-to-cell communication. These systems generally have a bucket-in-bucket structure and are hereafter referred to as a vertical-type co-culture plate (VTCP). However, VTCPs have several disadvantages, such as the inability to simultaneously observe samples in both containers and the inability of cell-to-cell communication through the filters at high cell densities. In this study, we developed a novel horizontal-type co-culture plate (HTCP) to overcome these disadvantages and confirm its performance. In addition, we clarified the migration characteristics of substances secreted from cells in horizontal co-culture vessels. It is generally assumed that less material is exchanged between the horizontal vessels. However, the extracellular vesicle (EV) transfer was found to be twice as high when using HTCP. Other merits include control of the degree of co-culture via the placement of cells. We believe that this novel HTCP container will facilitate research on cell-to-cell communication in various fields.

11.
Mol Clin Oncol ; 15(5): 235, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34650802

ABSTRACT

The aim of the current study was to investigate the prognostic and predictive significance of polymorphisms in the thymidylate synthase (TS) gene, alongside the loss of heterozygocity (LOH) at this gene locus in patients with colorectal cancer. Genotyping was carried out for a variable number tandem repeat (VNTR) polymorphism in the TS 5'-untranslated region, a G/C single nucleotide polymorphism (SNP) located within this VNTR, and for TS LOH status in 246 colorectal cancer and paired normal DNA samples. The results were analyzed in relation to clinicopathological features, including the prognostic and predictive significance of TS genotype in patients who underwent curative surgery. Complete VNTR, SNP and LOH information for TS was obtained in 226 cases. No significant associations were observed between normal tissue TS genotype status and clinicopathological features. LOH of TS was observed in 58% of tumor samples and was associated with poor prognosis independently of clinical stage. Cases exhibiting TS LOH were classified into the three groups of 2R/loss, 3G/loss and 3C/loss. Patients with 3C/loss genotype status had poor outcomes when treated by surgery alone, but their survival was similar to patients with other genotypes following Fluorouracil (5-FU)-based adjuvant chemotherapy. The results suggested that LOH of the TS locus may be a significant prognostic factor in colorectal cancer, with the genotype of the residual allele also demonstrating an influence on prognosis. In conclusion, LOH status should be considered when TS genotype is explored as a potential prognostic and predictive marker for 5-FU-based adjuvant chemotherapy in colorectal cancer.

12.
Cancer Sci ; 111(12): 4405-4416, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32986894

ABSTRACT

Acquisition of resistance to gemcitabine is a challenging clinical and biological hallmark property of refractory pancreatic cancer. Here, we investigated whether glycogen synthase kinase (GSK)-3ß, an emerging therapeutic target in various cancer types, is mechanistically involved in acquired resistance to gemcitabine in human pancreatic cancer. This study included 3 gemcitabine-sensitive BxPC-3 cell-derived clones (BxG30, BxG140, BxG400) that acquired stepwise resistance to gemcitabine and overexpressed ribonucleotide reductase (RR)M1. Treatment with GSK3ß-specific inhibitor alone attenuated the viability and proliferation of the gemcitabine-resistant clones, while synergistically enhancing the efficacy of gemcitabine against these clones and their xenograft tumors in rodents. The gemcitabine-resensitizing effect of GSK3ß inhibition was associated with decreased expression of RRM1, reduced phosphorylation of Rb protein, and restored binding of Rb to the E2 transcription factor (E2F)1. This was followed by decreased E2F1 transcriptional activity, which ultimately suppressed the expression of E2F1 transcriptional targets including RRM1, CCND1 encoding cyclin D1, thymidylate synthase, and thymidine kinase 1. These results suggested that GSK3ß participates in the acquisition of gemcitabine resistance by pancreatic cancer cells via impairment of the functional interaction between Rb tumor suppressor protein and E2F1 pro-oncogenic transcription factor, thereby highlighting GSK3ß as a promising target in refractory pancreatic cancer. By providing insight into the molecular mechanism of gemcitabine resistance, this study identified a potentially novel strategy for pancreatic cancer chemotherapy.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm , Glycogen Synthase Kinase 3 beta/physiology , Pancreatic Neoplasms/drug therapy , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Deoxycytidine/pharmacology , E2F1 Transcription Factor/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Heterografts , Humans , Mice , Mice, Nude , Pancreatic Neoplasms/metabolism , Phosphorylation , Retinoblastoma Protein/metabolism , Ribonucleoside Diphosphate Reductase/metabolism , Thymidine Kinase/metabolism , Thymidylate Synthase/metabolism , Transcription, Genetic , Gemcitabine
13.
J Pathol ; 252(3): 330-342, 2020 11.
Article in English | MEDLINE | ID: mdl-32770675

ABSTRACT

The molecular and clinical characteristics of non-ampullary duodenal adenomas and intramucosal adenocarcinomas are not fully understood because they are rare. To clarify these characteristics, we performed genetic and epigenetic analysis of cancer-related genes in these lesions. One hundred and seven non-ampullary duodenal adenomas and intramucosal adenocarcinomas, including 100 small intestinal-type tumors (90 adenomas and 10 intramucosal adenocarcinomas) and 7 gastric-type tumors (2 pyloric gland adenomas and 5 intramucosal adenocarcinomas), were investigated. Using bisulfite pyrosequencing, we assessed the methylation status of CpG island methylator phenotype (CIMP) markers and MLH1. Then using next-generation sequencing, we performed targeted exome sequence analysis within 75 cancer-related genes in 102 lesions. There were significant differences in the clinicopathological and molecular variables between small intestinal- and gastric-type tumors, which suggests the presence of at least two separate carcinogenic pathways in non-ampullary duodenal adenocarcinomas. The prevalence of CIMP-positive lesions was higher in intramucosal adenocarcinomas than in adenomas. Thus, concurrent hypermethylation of multiple CpG islands is likely associated with development of non-ampullary duodenal intramucosal adenocarcinomas. Mutation analysis showed that APC was the most frequently mutated gene in these lesions (56/102; 55%), followed by KRAS (13/102; 13%), LRP1B (10/102; 10%), GNAS (8/102; 8%), ERBB3 (7/102; 7%), and RNF43 (6/102; 6%). Additionally, the high prevalence of diffuse or focal nuclear ß-catenin accumulation (87/102; 85%) as well as mutations of WNT pathway components (60/102; 59%) indicates the importance of WNT signaling to the initiation of duodenal adenomas. The higher than previously reported frequency of APC gene mutations in small bowel adenocarcinomas as well as the difference in the APC mutation distributions between small intestinal-type adenomas and intramucosal adenocarcinomas may indicate that the adenoma-carcinoma sequence has only limited involvement in duodenal carcinogenesis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Adenocarcinoma/genetics , Adenoma/genetics , Biomarkers, Tumor/genetics , Duodenal Neoplasms/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Mutation , Adenocarcinoma/diagnosis , Adenocarcinoma/pathology , Adenoma/diagnosis , Adenoma/pathology , Adult , Aged , Aged, 80 and over , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Copy Number Variations , DNA Methylation , Duodenal Neoplasms/diagnosis , Duodenal Neoplasms/pathology , Duodenum/pathology , Female , High-Throughput Nucleotide Sequencing , Humans , Intestinal Mucosa/pathology , Male , Middle Aged
14.
Sci Rep ; 10(1): 11807, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678196

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal cancer and is often refractory to current therapies. Development of efficient therapeutic strategies against ESCC presents a major challenge. Glycogen synthase kinase (GSK)3ß has emerged as a multipotent therapeutic target in various diseases including cancer. Here we investigated the biology and pathological role of GSK3ß in ESCC and explored the therapeutic effects of its inhibition. The expression of GSK3ß and tyrosine (Y)216 phosphorylation-dependent activity was higher in human ESCC cell lines and primary tumors than untransformed esophageal squamous TYNEK-3 cells from an ESCC patient and tumor-adjacent normal esophageal mucosa. GSK3ß-specific inhibitors and small interfering (si)RNA-mediated knockdown of GSK3ß attenuated tumor cell survival and proliferation, while inducing apoptosis in ESCC cells and their xenograft tumors in mice. GSK3ß inhibition spared TYNEK-3 cells and the vital organs of mice. The therapeutic effect of GSK3ß inhibition in tumor cells was associated with G0/G1- and G2/M-phase cell cycle arrest, decreased expression of cyclin D1 and cyclin-dependent kinase (CDK)4 and increased expression of cyclin B1. These results suggest the tumor-promoting role of GSK3ß is via cyclin D1/CDK4-mediated cell cycle progression. Consequently, our study provides a biological rationale for GSK3ß as a potential therapeutic target in ESCC.


Subject(s)
Antineoplastic Agents/pharmacology , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Adult , Aged , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression , Glycogen/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Mice , Middle Aged , Molecular Targeted Therapy , Neoplasm Metastasis , Neoplasm Staging , Phosphorylation , Xenograft Model Antitumor Assays
15.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G175-G188, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32538140

ABSTRACT

Gastrokines (GKNs) are anti-inflammatory proteins secreted by gastric epithelial (surface mucous and pit) cells, with their aberrant loss of expression causally linked to premalignant inflammation and gastric cancer (GC). Transcriptional mechanisms accounting for GKN expression loss have not been elucidated. Using human clinical cohorts, mouse transgenics, bioinformatics, and transfection/reporter assays, we report a novel mechanism of GKN gene transcriptional regulation and its impairment in GC. GKN1/GKN2 loss is highly coordinated, with both genes showing parallel downregulation during human and mouse GC development, suggesting joint transcriptional control. In BAC transgenic studies, we defined a 152-kb genomic region surrounding the human GKN1/GKN2 genes sufficient to direct their tissue- and lineage-restricted expression. A screen of the 152-kb region for candidate regulatory elements identified a DNase I hypersensitive site (CR2) located 4 kb upstream of the GKN1 gene. CR2 showed overlapping enrichment of enhancer-related histone marks (H3K27Ac), a consensus binding site (GRE) for the glucocorticoid receptor (GR), strong GR occupancy in ChIP-seq data sets and, critically, exhibited dexamethasone-sensitive enhancer activity in reporter assays. Strikingly, GR showed progressive expression loss, paralleling that of GKN1/2, in human and mouse GC, suggesting desensitized glucocorticoid signaling as a mechanism underlying GKN loss. Finally, mouse adrenalectomy studies revealed a critical role for endogenous glucocorticoids in sustaining correct expression (and anti-inflammatory restraint) of GKNs in vivo. Together, these data link the coordinate expression of GKNs to a glucocorticoid-responsive and likely shared transcriptional enhancer mechanism, with its compromised activation contributing to dual GKN loss during GC progression.NEW & NOTEWORTHY Gastrokine 2 (GKN2) is an anti-inflammatory protein produced by the gastric epithelium. GKN2 expression is progressively lost during gastric cancer (GC), which is believed to play a casual role in GC development. Here, we use bacterial artificial chromosome transgenic studies to identify a glucocorticoid-responsive enhancer element that likely governs expression of GKN1/GKN2, which, via parallel expression loss of the anti-inflammatory glucocorticoid receptor, reveals a novel mechanism to explain the loss of GKN2 during GC pathogenesis.


Subject(s)
Carrier Proteins/metabolism , Glucocorticoids/pharmacology , Peptide Hormones/metabolism , Stomach Neoplasms/metabolism , A549 Cells , Animals , Carrier Proteins/genetics , Chromosomes, Artificial, Bacterial , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Transgenic , Multigene Family , Peptide Hormones/genetics
16.
Cells ; 9(6)2020 06 03.
Article in English | MEDLINE | ID: mdl-32503133

ABSTRACT

Glycogen synthase kinase (GSK)3ß is a multifunctional serine/threonine protein kinase with more than 100 substrates and interacting molecules. GSK3ß is normally active in cells and negative regulation of GSK3ß activity via phosphorylation of its serine 9 residue is required for most normal cells to maintain homeostasis. Aberrant expression and activity of GSK3ß contributes to the pathogenesis and progression of common recalcitrant diseases such as glucose intolerance, neurodegenerative disorders and cancer. Despite recognized roles against several proto-oncoproteins and mediators of the epithelial-mesenchymal transition, deregulated GSK3ß also participates in tumor cell survival, evasion of apoptosis, proliferation and invasion, as well as sustaining cancer stemness and inducing therapy resistance. A therapeutic effect from GSK3ß inhibition has been demonstrated in 25 different cancer types. Moreover, there is increasing evidence that GSK3ß inhibition protects normal cells and tissues from the harmful effects associated with conventional cancer therapies. Here, we review the evidence supporting aberrant GSK3ß as a hallmark property of cancer and highlight the beneficial effects of GSK3ß inhibition on normal cells and tissues during cancer therapy. The biological rationale for targeting GSK3ß in the treatment of cancer is also discussed at length.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Animals , Apoptosis , Carcinogenesis/pathology , Clinical Trials as Topic , Drug Resistance, Neoplasm , Humans , Neoplasms/pathology
17.
Oncogenesis ; 9(2): 26, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32071290

ABSTRACT

Brahma-related gene 1 (BRG1), an ATPase subunit of the SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex controls multipotent neural crest formation by regulating epithelial-mesenchymal transition (EMT)-related genes with adenosine triphosphate-dependent chromodomain-helicase DNA-binding protein 7 (CHD7). The expression of BRG1 engages in pre-mRNA splicing through interacting RNPs in cancers; however, the detailed molecular pathology of how BRG1and CHD7 relate to cancer development remains largely unveiled. This study demonstrated novel post-transcriptional regulation of BRG1 in EMT and relationship with FIRΔexon2, which is a splicing variant of the far-upstream element-binding protein (FUBP) 1-interacting repressor (FIR) lacking exon 2, which fails to repress c-myc transcription in cancers. Previously, we have reported that FIR complete knockout mice (FIR-/-) was embryonic lethal before E9.5, suggesting FIR is crucial for development. FIRΔexon2 acetylated H3K27 on promoter of BRG1 by CHIP-sequence and suppressed BRG1 expression post-transcriptionally; herein BRG1 suppressed Snai1 that is a transcriptional suppressor of E-cadherin that prevents cancer invasion and metastasis. Ribosomal proteins, hnRNPs, splicing-related factors, poly (A) binding proteins, mRNA-binding proteins, tRNA, DEAD box, and WD-repeat proteins were identified as co-immunoprecipitated proteins with FIR and FIRΔexon2 by redoing exhaustive mass spectrometry analysis. Furthermore, the effect of FIRΔexon2 on FGF8 mRNA splicing was examined as an indicator of neural development due to impaired CHD7 revealed in CHARGE syndrome. Expectedly, siRNA of FIRΔexon2 altered FGF8 pre-mRNA splicing, indicated close molecular interaction among FIRΔexon2, BRG1 and CHD7. FIRΔexon2 mRNA was elevated in human gastric cancers but not in non-invasive gastric tumors in FIR+/ mice (K19-Wnt1/C2mE x FIR+/-). The levels of FIR family (FIR, FIRΔexon2 and PUF60), BRG1, Snai1, FBW7, E-cadherin, c-Myc, cyclin-E, and SAP155 increased in the gastric tumors in FIR+/- mice compared to those expressed in wild-type mice. FIR family, Snai1, cyclin-E, BRG1, and c-Myc showed trends toward higher expression in larger tumors than in smaller tumors in Gan-mice (K19-Wnt1/C2mE). The expressions of BRG1 and Snai1 were positively correlated in the gastric tumors of the Gan-mice. Finally, BRG1 is a candidate substrate of F-box and WD-repeat domain-containing 7 (FBW7) revealed by three-dimensional crystal structure analysis that the U2AF-homology motif (UHM) of FIRΔexon2 interacted with tryptophan-425 and asparate-399 (WD)-like motif in the degron pocket of FBW7 as a UHM-ligand motif. Together, FIRΔexon2 engages in multi-step post-transcriptional regulation of BRG1, affecting EMT through the BRG1/Snai1/E-cadherin pathway and promoting tumor proliferation and invasion of gastric cancers.

18.
PLoS One ; 15(2): e0229262, 2020.
Article in English | MEDLINE | ID: mdl-32092099

ABSTRACT

Recent studies have shown that colorectal serrated lesions, which include sessile serrated adenomas (SSAs) and traditional serrated adenomas (TSAs), are precursors of colorectal cancer. However, the molecular mechanisms underlying the carcinogenesis, particularly in TSAs, remain largely uncharacterized. To clarify their molecular and clinicopathological characteristics, we performed mutation and methylation analyses of cancer-associated genes in 78 serrated lesions, including TSAs, SSAs and microvesicular hyperplastic polyps. Target exon sequence analysis was performed with 39 genes, including genes known to be frequently mutated in colorectal cancers and/or serrated lesions. We also used bisulfite pyrosequencing to assess the methylation status of various cancer-associated genes and marker genes of the CpG island methylator phenotype (CIMP). The prevalence of mutations in genes associated with Wnt signaling was significantly higher in TSAs than SSAs (65% vs. 28%, p < 0.01). Among those, RNF43 mutations were observed in 38% of TSAs and 17% of SSAs. In immunohistochemical studies of 39 serrated lesions, the prevalence of abnormal nuclear ß-catenin accumulation was significantly higher in TSAs (57%) than SSAs (8%) (P = 0.01). SMOC1 methylation was detected in 54% of TSAs but in no SSAs (p < 0.01). Additionally, SMOC1 methylation was more prevalent among TSAs with KRAS mutation (82%) than with BRAF mutation (38%, p = 0.03). Lesions with CIMP-high or RNF43 mutations were detected only in TSAs with BRAF mutation, suggesting two distinct carcinogenic pathways in TSAs. Mutations in genes associated with Wnt signaling play a greater role in the carcinogenesis of TSAs than SSAs.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Mutation , Wnt Signaling Pathway/genetics , Aged , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Osteonectin/genetics , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras)/genetics
19.
Methods Mol Biol ; 2102: 419-437, 2020.
Article in English | MEDLINE | ID: mdl-31989570

ABSTRACT

While it has been more than 30 years since its discovery, the ras family of genes has not yet lost its impact on basic and clinical oncology. These genes remain central to the field of molecular oncology as tools for investigating carcinogenesis and oncogenic signaling, as powerful biomarkers for the identification of those who have or are at high risk of developing cancer, and as oncogene targets for the design and development of new chemotherapeutic drugs. Mutational activation of the K-RAS proto-oncogene is an early event in the development and progression of the colorectal, pancreatic, and lung cancers that are the major causes of cancer death in the world. The presence of point mutational "hot spots" at sites necessary for the activation of this proto-oncogene has led to the development of a number of highly sensitive PCR-based methods that are feasible for the early detection of K-RAS oncogene mutations in the clinical setting. In light of these facts, mutation at the K-RAS oncogene has the potential to serve as a useful biomarker in the early diagnosis and risk assessment of cancers with oncogenic ras signaling. This chapter describes a highly sensitive method for detecting mutant K-RAS, enriched PCR, and its application to early detection of alterations in this oncogene in preneoplastic and early neoplastic lesions of the colon and rectum.


Subject(s)
Colorectal Neoplasms/genetics , DNA Mutational Analysis/methods , Genes, ras/genetics , Polymerase Chain Reaction/methods , Precancerous Conditions/genetics , Cell Line, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , DNA/genetics , DNA/isolation & purification , Electrophoresis, Polyacrylamide Gel , Humans , Point Mutation , Precancerous Conditions/diagnosis , Precancerous Conditions/pathology , Proto-Oncogene Mas , Workflow
20.
Cancer Sci ; 111(2): 429-440, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31808966

ABSTRACT

Soft tissue sarcomas (STSs) are a rare cancer type. Almost half are unresponsive to multi-pronged treatment and might therefore benefit from biologically targeted therapy. An emerging target is glycogen synthase kinase (GSK)3ß, which is implicated in various diseases including cancer. Here, we investigated the expression, activity and putative pathological role of GSK3ß in synovial sarcoma and fibrosarcoma, comprising the majority of STS that are encountered in orthopedics. Expression of the active form of GSK3ß (tyrosine 216-phosphorylated) was higher in synovial sarcoma (SYO-1, HS-SY-II, SW982) and in fibrosarcoma (HT1080) tumor cell lines than in untransformed fibroblast (NHDF) cells that are assumed to be the normal mesenchymal counterpart cells. Inhibition of GSK3ß activity by pharmacological agents (AR-A014418, SB-216763) or of its expression by RNA interference suppressed the proliferation of sarcoma cells and their invasion of collagen gel, as well as inducing their apoptosis. These effects were associated with G0/G1-phase cell cycle arrest and decreased expression of cyclin D1, cyclin-dependent kinase (CDK)4 and matrix metalloproteinase 2. Intraperitoneal injection of the GSK3ß inhibitors attenuated the growth of SYO-1 and HT1080 xenografts in athymic mice without obvious detrimental effects. It also mitigated cell proliferation and induced apoptosis in the tumors of mice. This study indicates that increased activity of GSK3ß in synovial sarcoma and fibrosarcoma sustains tumor proliferation and invasion through the cyclin D1/CDK4-mediated pathway and enhanced extracellular matrix degradation. Our results provide a biological basis for GSK3ß as a new and promising therapeutic target for these STS types.


Subject(s)
Fibrosarcoma/drug therapy , Glycogen Synthase Kinase 3 beta/metabolism , Indoles/administration & dosage , Maleimides/administration & dosage , Sarcoma, Synovial/drug therapy , Thiazoles/administration & dosage , Urea/analogs & derivatives , Animals , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism , Fibrosarcoma/genetics , Fibrosarcoma/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/genetics , Humans , Indoles/pharmacology , Injections, Intraperitoneal , Maleimides/pharmacology , Mice , Phosphorylation/drug effects , RNA Interference , Sarcoma, Synovial/genetics , Sarcoma, Synovial/metabolism , Thiazoles/pharmacology , Up-Regulation/drug effects , Urea/administration & dosage , Urea/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...