Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 358: 142219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704040

ABSTRACT

The worldwide used herbicide Glyphosate can interact with environmental variables, but there is limited information on the influence of environmental stressors on its toxicity. Environmental changes could modify glyphosate effects on non-target organisms, including parasites such as gordiids. The freshwater microscopic larvae of the gordiid Chordodes nobilii are sensitive to several pollutants and environmental variables, but their combined effect has not been evaluated yet. The aim of this study was to evaluate the impact of temperature, pH and exposure time on the toxicity of Glyphosate to C. nobilii larvae. A protocol was followed to evaluate the infectivity of larvae treated with factorial combinations of concentration (0 and 0.067 mg/L), exposure time (24 and 48 h), temperature (18, 23 and 28 °C), and pH (7, 8 and 9). The reference values were 23 °C, pH 8 and 48 h. The interaction effect on the infectivity of gordiid larvae was assessed post-exposure using Aedes aegyptii larvae as host. Results were evaluated using GLMM, which does not require data transformation. The modeling results revealed three highly significant triple interactions. Glyphosate toxicity varied depending on the combination of variables, with a decrease being observed after 24 h-exposure at pH 7 and 23 °C. Glyphosate and 28 °C combination led to slightly reduced infectivity compared to temperature alone. This study is the first to report the combined effects of glyphosate, temperature, pH and time on a freshwater animal. It demonstrates that a specific combination of factors determines the effect of glyphosate on a non-target organism. The potential use of C. nobilli as a bioindicator is discussed. In the context of global warming and considering that the behavioral manipulation of terrestrial hosts by gordiids can shape community structure and the energy flow through food webs, our results raise concerns about possible negative effects of climate change on host-parasite dynamics.


Subject(s)
Glycine , Glyphosate , Herbicides , Larva , Temperature , Glycine/analogs & derivatives , Glycine/toxicity , Animals , Herbicides/toxicity , Larva/drug effects , Water Pollutants, Chemical/toxicity , Hydrogen-Ion Concentration , Helminths/drug effects , Helminths/physiology , Aedes/drug effects , Parasites/drug effects
2.
Environ Microbiol Rep ; 9(2): 169-173, 2017 04.
Article in English | MEDLINE | ID: mdl-28085231

ABSTRACT

An initial survey in 2009 carried out at a site in northwestern Patagonia region, Argentina, revealed for the first time in South America the presence of the flagellate Crithidia bombi and the neogregarine Apicystis bombi, two pathogens associated with the Palaearctic invasive bumble bee Bombus terrestris. In order to determine the long-term persistence and dynamics of this microparasite complex, four additional collections at the same site (San Carlos de Bariloche) were conducted along the following seven years. Both protists were detected in all collections: prevalence was 2%-21.6% for C. bombi and 1.2%-14% for A. bombi. In addition, the microsporidium Nosema bombi was recorded for the first time in the country in the last two collections, at prevalences of 12.4% and 2.4% and unusually high infection intensities (Average = 6.56 × 107 spores per individual). Due to the exceptional dispersal ability of the exotic B. terrestris, these three multihost pathogens should be considered as potential threats to South American native bumble bees.


Subject(s)
Apicomplexa/isolation & purification , Bees/microbiology , Bees/parasitology , Crithidia/isolation & purification , Nosema/isolation & purification , Animals , Argentina , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...