Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(14): 17857-17869, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38533949

ABSTRACT

Electron-rich organocerium complexes (C5Me4H)3Ce and [(C5Me5)2Ce(ortho-oxa)], with redox potentials E1/2 = -0.82 V and E1/2 = -0.86 V versus Fc/Fc+, respectively, were reacted with fullerene (C60) in different stoichiometries to obtain molecular materials. Structurally characterized cocrystals: [(C5Me4H)3Ce]2·C60 (1) and [(C5Me5)2Ce(ortho-oxa)]3·C60 (2) of C60 with cerium-based, molecular rare earth precursors are reported for the first time. The extent of charge transfer in 1 and 2 was evaluated using a series of physical measurements: FT-IR, Raman, solid-state UV-vis-NIR spectroscopy, X-ray absorption near-edge structure (XANES) spectroscopy, and magnetic susceptibility measurements. The physical measurements indicate that 1 and 2 comprise the cerium(III) oxidation state, with formally neutral C60 as a cocrystal in both cases. Pressure-dependent periodic density functional theory calculations were performed to study the electronic structure of 1. Inclusion of a Hubbard-U parameter removes Ce f states from the Fermi level, opens up a band gap, and stabilizes FM/AFM magnetic solutions that are isoenergetic because of the large distances between the Ce(III) cations. The electronic structure of this strongly correlated Mott insulator-type system is reminiscent of the well-studied Ce2O3.

2.
J Am Chem Soc ; 146(9): 5781-5785, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38387072

ABSTRACT

Molecular qubits offer an attractive basis for quantum information processing, but challenges remain with regard to sustained coherence. Qubits based on clock transitions offer a method to improve the coherence times. We propose a general strategy for identifying molecules with high-frequency clock transitions in systems where a d electron is coupled to a crystal-field singlet state of an f configuration, resulting in an MJ = ±1/2 ground state with strong hyperfine coupling. Using this approach, a 9.834 GHz clock transition was identified in a molecular Pr complex, [K(crypt)][Cp'3PrII], leading to 3-fold enhancements in T2 relative to other transitions in the spectrum. This result indicates the promise of the design principles outlined here for the further development of f-element systems for quantum information applications.

3.
Chem Sci ; 14(44): 12784-12795, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020387

ABSTRACT

In LnO2 (Ln = Ce, Pr, and Tb), the amount of Ln 4f mixing with O 2p orbitals was determined by O K-edge X-ray absorption near edge (XANES) spectroscopy and was similar to the amount of mixing between the Ln 5d and O 2p orbitals. This similarity was unexpected since the 4f orbitals are generally perceived to be "core-like" and can only weakly stabilize ligand orbitals through covalent interactions. While the degree of orbital mixing seems incompatible with this view, orbital mixing alone does not determine the degree of stabilization provided by a covalent interaction. We used a Hubbard model to determine this stabilization from the energies of the O 2p to 4f, 5d(eg), and 5d(t2g) excited charge-transfer states and the amount of excited state character mixed into the ground state, which was determined using Ln L3-edge and O K-edge XANES spectroscopy. The largest amount of stabilization due to mixing between the Ln 4f and O 2p orbitals was 1.6(1) eV in CeO2. While this energy is substantial, the stabilization provided by mixing between the Ln 5d and O 2p orbitals was an order of magnitude greater consistent with the perception that covalent bonding in the lanthanides is largely driven by the 5d orbitals rather than the 4f orbitals.

4.
Inorg Chem ; 62(50): 20721-20732, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-37590371

ABSTRACT

Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log ßmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.


Subject(s)
Chelating Agents , Radiopharmaceuticals , Thorium , Radioisotopes , Zirconium , Positron-Emission Tomography/methods , Ligands
5.
Inorg Chem ; 62(34): 13953-13963, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37584949

ABSTRACT

The actinide-halogen complexes (AnO2X42-, X = Cl, Br, and I) are the simplest and most representative compounds for studying the bonding nature of actinides with ligands. In this work, we attempted to synthesize the crystals of NpO2X42- (X = Cl, Br, and I). The crystals of NpO2Cl42- and NpO2Br42- were successfully synthesized, in which the structure of NpO2Br42- was obtained for the first time. The crystal of NpO2I42- could not be obtained due to the rapid reduction of Np(VI) to Np(V) by I-. The molecular structures of NpO2Cl42- and NpO2Br42- were characterized by single-crystal X-ray diffraction and infrared, Raman, and UV-Vis-NIR absorption spectroscopy. The complexes of NpO2X42- (X = Cl, Br, and I) were also investigated by density functional theory calculations, and the calculated vibration frequencies and absorption features were comparable to the experimental results. Both the experimental results and theoretical calculations demonstrate the strengthened Np-O bonds and the weakened Np-X bonds across the NpO2X42- series; however, the population analysis on the frontier molecular orbitals (MOs) of NpO2X42- indicates a slight reduction in the Np-O bonding covalency and an enhancement in the Np-X bonding covalency from NpO2Cl42- to NpO2I42-. Results in this work have enriched the crystal database of the AnO2X42- family and provided insights into the bonding nature in the actinide complexes with soft- and hard-donor ligands.

6.
Nat Commun ; 14(1): 3134, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37253731

ABSTRACT

Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the tetravalent oxidation state. Synthetic, spectroscopic, and theoretical tools deployed on several solid-state Pr4+-oxides uncover the unusual participation of 4f orbitals in bonding and the anomalous hybridization of the 4f1 configuration with ligand valence electrons, analogous to transition metals. The competition between crystal-field and spin-orbit-coupling interactions fundamentally transforms the spin-orbital magnetism of Pr4+, which departs from the Jeff = 1/2 limit and resembles that of high-valent actinides. Our results show that Pr4+ ions are in a class on their own, where the hierarchy of single-ion energy scales can be tailored to explore new correlated phenomena in quantum materials.

7.
J Am Chem Soc ; 145(2): 781-786, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36603174

ABSTRACT

Complexes featuring lanthanide-ligand multiple bonds are rare and highly reactive. They are important synthetic targets to understand 4f/5d-bonding in comparison to d-block and actinide congeners. Herein, the isolation and characterization of a bridging cerium(IV)-nitride complex: [(TriNOx)Ce(Li2µ-N)Ce(TriNOx)][BArF4] is reported, the first example of a molecular cerium-nitride. The compound was isolated by deprotonating a monometallic cerium(IV)-ammonia complex: [CeIV(NH3)(TriNOx)][BArF4]. The average Ce═N bond length of [(TriNOx)Ce(Li2µ-N)Ce(TriNOx)][BArF4] was 2.117(3) Å. Vibrational studies of the 15N-isotopomer exhibited a shift of the Ce═N═Ce asymmetric stretch from ν = 644 cm-1 to 640 cm-1, and X-ray spectroscopic studies confirm the +4 oxidation state of cerium. Computational analyses showed strong involvement of the cerium 4f shell in bonding with overall 16% and 11% cerium weight in the σ- and π-bonds of the Ce═N═Ce fragment, respectively.


Subject(s)
Cerium , Lanthanoid Series Elements , Cerium/chemistry , Spectrum Analysis , Oxidation-Reduction , Ligands
8.
J Synchrotron Radiat ; 29(Pt 1): 67-79, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34985424

ABSTRACT

Soft X-ray spectromicroscopy at the O K-edge, U N4,5-edges and Ce M4,5-edges has been performed on focused ion beam sections of spent nuclear fuel for the first time, yielding chemical information on the sub-micrometer scale. To analyze these data, a modification to non-negative matrix factorization (NMF) was developed, in which the data are no longer required to be non-negative, but the non-negativity of the spectral components and fit coefficients is largely preserved. The modified NMF method was utilized at the O K-edge to distinguish between two components, one present in the bulk of the sample similar to UO2 and one present at the interface of the sample which is a hyperstoichiometric UO2+x species. The species maps are consistent with a model of a thin layer of UO2+x over the entire sample, which is likely explained by oxidation after focused ion beam (FIB) sectioning. In addition to the uranium oxide bulk of the sample, Ce measurements were also performed to investigate the oxidation state of that fission product, which is the subject of considerable interest. Analysis of the Ce spectra shows that Ce is in a predominantly trivalent state, with a possible contribution from tetravalent Ce. Atom probe analysis was performed to provide confirmation of the presence and localization of Ce in the spent fuel.

9.
Inorg Chem ; 61(1): 92-104, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34817979

ABSTRACT

Monodentate organophosphorus ligands have been used for the extraction of the uranyl ion (UO22+) for over half a century and have exhibited exceptional extractability and selectivity toward the uranyl ion due to the presence of the phosphoryl group (O═P). Tributyl phosphate (TBP) is the extractant of the world-renowned PUREX process, which selectively recovers uranium from spent nuclear fuel. Trialkyl phosphine oxide (TRPO) shows extractability toward the uranyl ion that far exceeds that for other metal ions, and it has been used in the TRPO process. To date, however, the mechanism of the high affinity of the phosphoryl group for UO22+ remains elusive. We herein investigate the bonding covalency in a series of complexes of UO22+ with TRPO by oxygen K-edge X-ray absorption spectroscopy (XAS) in combination with density functional theory (DFT) calculations. Four TRPO ligands with different R substituents are examined in this work, for which both the ligands and their uranyl complexes are crystallized and investigated. The study of the electronic structure of the TRPO ligands reveals that the two TRPO molecules, irrespective of their substituents, can engage in σ- and π-type interactions with U 5f and 6d orbitals in the UO2Cl2(TRPO)2 complexes. Although both the axial (Oyl) and equatorial (Oeq) oxygen atoms in the UO2Cl2(TRPO)2 complexes contribute to the X-ray absorption, the first pre-edge feature in the O K-edge XAS with a small intensity is exclusively contributed by Oeq and is assigned to the transition from Oeq 1s orbitals to the unoccupied molecular orbitals of 1b1u + 1b2u + 1b3u symmetries resulting from the σ- and π-type mixing between U 5f and Oeq 2p orbitals. The small intensity in the experimental spectra is consistent with the small amount of Oeq 2p character in these orbitals for the four UO2Cl2(TRPO)2 complexes as obtained by Mulliken population analysis. The DFT calculations demonstrate that the U 6d orbitals are also involved in the U-TRPO bonding interactions in the UO2Cl2(TRPO)2 complexes. The covalent bonding interactions between TRPO and UO22+, especially the contributions from U 5f orbitals, while appearing to be small, are sufficiently responsible for the exceptional extractability and selectivity of monodentate organophosphorus ligands for the uranyl ion. Our results provide valuable insight into the fundamental actinide chemistry and are expected to directly guide actinide separation schemes needed for the development of advanced nuclear fuel cycle technologies.

10.
J Am Chem Soc ; 143(47): 19748-19760, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34787416

ABSTRACT

Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(µ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(µ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.


Subject(s)
Coordination Complexes/chemistry , Uranium/chemistry , Coordination Complexes/chemical synthesis , Density Functional Theory , Ligands , Models, Chemical , Oxidation-Reduction , Thorium/chemistry
11.
Chem Commun (Camb) ; 57(96): 13028, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34816840

ABSTRACT

Correction for 'Enhanced 5f-δ bonding in [U(C7H7)2]-: C K-edge XAS, magnetism, and ab initio calculations' by Yusen Qiao et al., Chem. Commun., 2021, 57, 9562-9565, DOI: 10.1039/D1CC03414F.

12.
Chem Commun (Camb) ; 57(75): 9562-9565, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34546232

ABSTRACT

5f covalency in [U(C7H7)2]- was probed with carbon K-edge X-ray absorption spectroscopy (XAS) and electronic structure theory. The results revealed U 5f orbital participation in δ-bonding in both the ground- and core-excited states; additional 5f ϕ-mixing is observed in the core-excited states. Comparisons with U(C8H8)2 show greater δ-covalency for [U(C7H7)2]-.

13.
Inorg Chem ; 60(9): 6672-6679, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33844509

ABSTRACT

Uranium nitride complexes are attractive targets for chemists as molecular models for the bonding, reactivity, and magnetic properties of next-generation nuclear fuels, but these molecules are uncommon and can be difficult to isolate due to their high reactivity. Here, we describe the synthesis of three new multinuclear uranium nitride complexes, [U(BCMA)2]2(µ-N)(µ-κ1:κ1-BCMA) (7), [(U(BIMA)2)2(µ-N)(µ-NiPr)(K2(µ-η3:η3-CH2CHNiPr)]2 (8), and [U(BIMA)2]2(µ-N)(µ-κ1:κ1-BIMA) (9) (BCMA = N,N-bis(cyclohexyl)methylamidinate, BIMA = N,N-bis(iso-propyl)methylamidinate), from U(III) and U(IV) amidinate precursors. By varying the amidinate ligand substituents and azide source, we were able to influence the composition and size of these nitride complexes. 15N isotopic labeling experiments confirmed the bridging nitride moieties in 7-9 were formed via two-electron reduction of azide. The tetra-uranium cluster 8 was isolated in 99% yield via reductive cleavage of the amidinate ligands; this unusual molecule contains nitrogen-based ligands with formal 1-, 2-, and 3- charges. Additionally, chemical oxidation of the U(IV) precursor U(N3)(BCMA)3 yielded the cationic U(V) species [U(N3)(BCMA)3][OTf]. Magnetic susceptibility measurements confirmed a U(IV) oxidation state for the uranium centers in the three nitride-bridged complexes and provided a comparison of magnetic behavior in the structurally related U(III)-U(IV)-U(V) series U(BCMA)3, U(N3)(BCMA)3, and [U(N3)(BCMA)3][OTf]. At 240 K, the magnetic moments in this series decreased with increasing oxidation state, i.e., U(III) > U(IV) > U(V); this trend follows the decreasing number of 5f valence electrons along this series.

14.
Dalton Trans ; 50(16): 5483-5492, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908963

ABSTRACT

C-term magnetic circular dichroism (MCD) spectroscopy is a powerful method for probing d-d and f-f transitions in paramagnetic metal complexes. However, this technique remains underdeveloped both experimentally and theoretically for studies of U(v) complexes of Oh symmetry, which have been of longstanding interest for probing electronic structure, bonding, and covalency in 5f systems. In this study, C-term NIR MCD of the Laporte forbidden f-f transitions of [UCl6]- and [UF6]- are reported, demonstrating the significant fine structure resolution possible with this technique including for the low energy Γ7 → Γ8 transitions in [UF6]-. The experimental NIR MCD studies were further extended to [U(OC6F5)6]-, [U(CH2SiMe3)6]-, and [U(NC(tBu)(Ph))6]- to evaluate the effects of ligand-type on the f-f MCD fine structure features. Theoretical calculations were conducted to determine the Laporte forbidden f-f transitions and their MCD intensity experimentally observed in the NIR spectra of the U(v) hexahalide complexes, via the inclusion of vibronic coupling, to better understand the underlying spectral fine structure features for these complexes. These spectra and simulations provide an important platform for the application of MCD spectroscopy to this widely studied class of U(v) complexes and identify areas for continued theoretical development.

15.
Chem Commun (Camb) ; 57(40): 4954-4957, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33876158

ABSTRACT

We report the synthesis of four homoleptic thorium(iv) amidate complexes as single-source molecular precursors for thorium dioxide. Each can be sublimed at atmospheric pressure, with the substituents on the amidate ligands significantly impacting their volatility and thermal stability. These complexes decompose via alkene elimination to give ThO2 without need for a secondary oxygen source. ThO2 samples formed from pyrolysis of C-alkyl amidates were found to have higher purity and crystallinity than ThO2 samples formed from C-aryl amidates.

16.
Dalton Trans ; 49(37): 13176-13184, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32936166

ABSTRACT

Si K-edge X-ray absorption spectra (XAS) have been measured experimentally and calculated using time-dependent density functional theory (TDDFT) to investigate electronic structure in aryl silanes, PhnSiH4-n (n = 0-4). Adding aryl groups to SiH4 splits the Si-H σ-antibonding orbitals into new orbitals with Si-Ph π-bonding (πb) and π-antibonding (π*) character. Greater aryl substitution is reflected by increasingly intense Si 1s → πb and Si 1s → π* transitions, and weaker transitions into the Si-H and Si-C σ* orbitals. These observations are consistent with known trends in the hydride donor ability of aryl silanes, which is driven in part by the composition of the LUMOs and the accessibility of pathways for electron delocalization through aromatic conjugation. Methodology developed for liquid-phase Si K-edge XAS measurements on PhSiH3 and Ph2SiH2 will enable dynamic studies of chemical transformations involving silicon-containing catalysts, intermediates, and substrates.

17.
Chem Sci ; 11(10): 2796-2809, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-34084340

ABSTRACT

Previous magnetic, spectroscopic, and theoretical studies of cerocene, Ce(C8H8)2, have provided evidence for non-negligible 4f-electron density on Ce and implied that charge transfer from the ligands occurs as a result of covalent bonding. Strong correlations of the localized 4f-electrons to the delocalized ligand π-system result in emergence of Kondo-like behavior and other quantum chemical phenomena that are rarely observed in molecular systems. In this study, Ce(C8H8)2 is analyzed experimentally using carbon K-edge and cerium M5,4-edge X-ray absorption spectroscopies (XAS), and computationally using configuration interaction (CI) calculations and density functional theory (DFT) as well as time-dependent DFT (TDDFT). Both spectroscopic approaches provide strong evidence for ligand → metal electron transfer as a result of Ce 4f and 5d mixing with the occupied C 2p orbitals of the C8H8 2- ligands. Specifically, the Ce M5,4-edge XAS and CI calculations show that the contribution of the 4f1, or Ce3+, configuration to the ground state of Ce(C8H8)2 is similar to strongly correlated materials such as CeRh3 and significantly larger than observed for other formally Ce4+ compounds including CeO2 and CeCl6 2-. Pre-edge features in the experimental and TDDFT-simulated C K-edge XAS provide unequivocal evidence for C 2p and Ce 4f covalent orbital mixing in the δ-antibonding orbitals of e2u symmetry, which are the unoccupied counterparts to the occupied, ligand-based δ-bonding e2u orbitals. The C K-edge peak intensities, which can be compared directly to the C 2p and Ce 4f orbital mixing coefficients determined by DFT, show that covalency in Ce(C8H8)2 is comparable in magnitude to values reported previously for U(C8H8)2. An intuitive model is presented to show how similar covalent contributions to the ground state can have different impacts on the overall stability of f-element metallocenes.

18.
Chem Sci ; 11(18): 4648-4668, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-34122920

ABSTRACT

We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th-O and U-O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.

19.
Angew Chem Int Ed Engl ; 58(17): 5749-5753, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30821048

ABSTRACT

Homoleptic uranium(IV) amidate complexes have been synthesized and applied as single-source molecular precursors for the chemical vapor deposition of UO2 thin films. These precursors decompose by alkene elimination to give highly crystalline phase-pure UO2 films with an unusual branched heterostructure.

20.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30540455

ABSTRACT

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

SELECTION OF CITATIONS
SEARCH DETAIL
...