Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(3): e17216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38429628

ABSTRACT

Soil microbial diversity mediates a wide range of key processes and ecosystem services influencing planetary health. Our knowledge of microbial biogeography patterns, spatial drivers and human impacts at the continental scale remains limited. Here, we reveal the drivers of bacterial and fungal community distribution in Australian topsoils using 1384 soil samples from diverse bioregions. Our findings highlight that climate factors, particularly precipitation and temperature, along with soil properties, are the primary drivers of topsoil microbial biogeography. Using random forest machine-learning models, we generated high-resolution maps of soil bacteria and fungi across continental Australia. The maps revealed microbial hotspots, for example, the eastern coast, southeastern coast, and west coast were dominated by Proteobacteria and Acidobacteria. Fungal distribution is strongly influenced by precipitation, with Ascomycota dominating the central region. This study also demonstrated the impact of human modification on the underground microbial community at the continental scale, which significantly increased the relative abundance of Proteobacteria and Ascomycota, but decreased Chloroflexi and Basidiomycota. The variations in microbial phyla could be attributed to distinct responses to altered environmental factors after human modifications. This study provides insights into the biogeography of soil microbiota, valuable for regional soil biodiversity assessments and monitoring microbial responses to global changes.


Subject(s)
Microbiota , Mycobiome , Humans , Anthropogenic Effects , Australia , Bacteria , Proteobacteria , Soil
2.
Virology ; 593: 110007, 2024 05.
Article in English | MEDLINE | ID: mdl-38346363

ABSTRACT

Australia is home to a diverse range of unique native fauna and flora. To address whether Australian ecosystems also harbour unique viruses, we performed meta-transcriptomic sequencing of 16 farmland and sediment samples taken from the east and west coasts of Australia. We identified 2460 putatively novel RNA viruses across 18 orders, the vast majority of which belonged to the microbe-associated phylum Lenarviricota. In many orders, such as the Nodamuvirales and Ghabrivirales, the novel viruses identified here comprised entirely new clades. Novel viruses also fell between established genera or families, such as in the Cystoviridae and Picornavirales, while highly divergent lineages were identified in the Sobelivirales and Ghabrivirales. Viral read abundance and alpha diversity were influenced by sampling site, soil type and land use, but not by depth from the surface. In sum, Australian soils and sediments are home to remarkable viral diversity, reflecting the biodiversity of local fauna and flora.


Subject(s)
RNA Viruses , Viruses , Humans , Ecosystem , Australia , Phylogeny , RNA Viruses/genetics
4.
Mol Ecol ; 32(23): 6243-6259, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36862079

ABSTRACT

Declines in soil multifunctionality (e.gsoil capacity to provide food and energy) are closely related to changes in the soil microbiome (e.g., diversity) Determining ecological drivers promoting such microbiome changes is critical knowledge for protecting soil functions. However, soil-microbe interactions are highly variable within environmental gradients and may not be consistent across studies. Here we propose that analysis of community dissimilarity (ß-diversity) is a valuable tool for overviewing soil microbiome spatiotemporal changes. Indeed, ß-diversity studies at larger scales (modelling and mapping) simplify complex multivariate interactions and refine our understanding of ecological drivers by also giving the possibility of expanding the environmental scenarios. This study represents the first spatial investigation of ß-diversity in the soil microbiome of New South Wales (800,642 km2 ), Australia. We used metabarcoding soil data (16S rRNA and ITS genes) as exact sequence variants (ASVs) and UMAP (Uniform Manifold Approximation and Projection) as the distance metric. ß-Diversity maps (1000-m resolution)-concordance correlations of 0.91-0.96 and 0.91-0.95 for bacteria and fungi, respectively-showed soil biome dissimilarities driven primarily by soil chemistry-pH and effective cation exchange capacity (ECEC)-and cycles of soil temperature-land surface temperature (LST-phase and LST-amplitude). Regionally, the spatial patterns of microbes parallel the distribution of soil classes (e.g., Vertosols) beyond spatial distances and rainfall, for example. Soil classes can be valuable discriminants for monitoring approaches, for example pedogenons and pedophenons. Ultimately, cultivated soils exhibited lower richness due to declines in rare microbes which might compromise soil functions over time.


Subject(s)
Microbiota , Soil , Australia , Temperature , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Microbiota/genetics
5.
Sci Data ; 10(1): 181, 2023 03 31.
Article in English | MEDLINE | ID: mdl-37002235

ABSTRACT

We introduce a new dataset of high-resolution gridded total soil organic carbon content data produced at 30 m × 30 m and 90 m × 90 m resolutions across Australia. For each product resolution, the dataset consists of six maps of soil organic carbon content along with an estimate of the uncertainty represented by the 90% prediction interval. Soil organic carbon maps were produced up to a depth of 200 cm, for six intervals: 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm and 100-200 cm. The maps were obtained through interpolation of 90,025 depth-harmonized organic carbon measurements using quantile regression forest and a large set of environmental covariates. Validation with 10-fold cross-validation showed that all six maps had relatively small errors and that prediction uncertainty was adequately estimated. The soil carbon maps provide a new baseline from which change in future carbon stocks can be monitored and the influence of climate change, land management, and greenhouse gas offset can be assessed.

6.
Data Brief ; 46: 108889, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36817731

ABSTRACT

Peatland is a unique ecosystem that is key in regulating global carbon cycle, climate, hydrology, and biodiversity. Peat moisture content is a key variable in ecohydrological and biogeochemical cycles known to control peatland's greenhouse gas emissions and fire vulnerability. Peat moisture is also an indicator of the success of peat restoration projects. Here we present datasets of peat moisture dynamic and retention capacity of degraded tropical peatlands. The data were collected from automatic daily monitoring and field campaigns. The peat moisture content data consists of daily data from 21 stations across three peatland provinces in Sumatra Island, Indonesia, from 2018 to 2019. In addition, peat water retention data were collected from field campaigns in Riau province. This dataset represents human modified peatlands which can be used as a benchmark for hydrological and biogeochemical models.

7.
Sci Total Environ ; 857(Pt 1): 159253, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36208771

ABSTRACT

Increased soil organic carbon (OC) in China has been reported in the past two decades, suggesting the sequestration of atmospheric carbon dioxide into soil, mitigating climate change and improving soil health. On the other hand, soil pH decrease had also been reported nationwide. If the two are related, the strategy of increasing soil OC could negatively affect soil quality for food production and the environment. We investigate this thread based on large-scale soil survey data from two provinces with typical soil and cropping patterns in the east and south of China, Jiangsu (102,600 km2) and Guangdong (177,900 km2). The data include >5000 observations from soil surveys conducted over the past four decades, i.e., the 1980s, 2006-2007, and 2010-2011. Using spatiotemporal modelling, we show that across Jiangsu province, the topsoil OC on average has increased from 8.5 g kg-1 to 9.9 g kg-1 from 1980 to 2000 and a further increase to 12.6 g kg-1 in 2010. This increase was accompanied by a decrease in average pH from 7.63 to 6.90. In Guangdong, there was an overall increase in average topsoil OC content from 14.2 g kg-1, 16.5 g kg-1, and 20.2 g kg-1 with a decrease in average pH from 5.58, 4.90, and 4.98. Based on the spatiotemporal modelling results, the structural equation modelling analysis shows that OC and pH changes were significantly correlated and linked by increased soil N content. On croplands, soil N content was mainly attributed to N fertiliser application. The pH decrease was particularly significant in the east of China where the soils were neutral in pH. We recommend that more revolutionary means be taken to sequestrate atmospheric carbon into soil as the current OC increase due to increasing crop productivity via a high rate of nitrogen application may have a potential acidification effect.


Subject(s)
Carbon , Soil , Soil/chemistry , Agriculture/methods , Fertilizers , Carbon Sequestration , Hydrogen-Ion Concentration , China
8.
Int J Ther Massage Bodywork ; 15(3): 4-17, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36061228

ABSTRACT

Our aim is to describe a possible class of nonpathological spontaneous movements that has so far received little attention in the scientific literature. These movements arise spontaneously without an underlying pathology such as Huntington's, Parkinson's, cerebral palsy or spinal cord injury. The movements arise in many different contexts including therapeutic, social, religious, and solitary settings. Anecdotal evidence suggests that the movements are related to development and maintenance of form, being part of inherited autoregulatory behaviors and hence bringing an overlooked therapeutic potential. We describe contexts in which they occur, illustrate with case reports, and characterize the movements in terms of their various triggers, movement phenotypes, and conscious and subconscious influences that can occur at both the individual level as well as during collaborative movement relationships between patient and therapist. This description is intended to create a more widespread awareness of the movements, and provide a foundation for future research as to their healing potential.

9.
PeerJ ; 10: e13740, 2022.
Article in English | MEDLINE | ID: mdl-35891649

ABSTRACT

Improving the amount of organic carbon in soils is an attractive alternative to partially mitigate climate change. However, the amount of carbon that can be potentially added to the soil is still being debated, and there is a lack of information on additional storage potential on global cropland. Soil organic carbon (SOC) sequestration potential is region-specific and conditioned by climate and management but most global estimates use fixed accumulation rates or time frames. In this study, we model SOC storage potential as a function of climate, land cover and soil. We used 83,416 SOC observations from global databases and developed a quantile regression neural network to quantify the SOC variation within soils with similar environmental characteristics. This allows us to identify similar areas that present higher SOC with the difference representing an additional storage potential. We estimated that the topsoils (0-30 cm) of global croplands (1,410 million hectares) hold 83 Pg C. The additional SOC storage potential in the topsoil of global croplands ranges from 29 to 65 Pg C. These values only equate to three to seven years of global emissions, potentially offsetting 35% of agriculture's 85 Pg historical carbon debt estimate due to conversion from natural ecosystems. As SOC store is temperature-dependent, this potential is likely to reduce by 14% by 2040 due to climate change in a "business as usual" scenario. The results of this article can provide a guide to areas of focus for SOC sequestration, and highlight the environmental cost of agriculture.


Subject(s)
Ecosystem , Soil , Carbon Sequestration , Carbon , Crops, Agricultural
10.
Data Brief ; 41: 107903, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35198682

ABSTRACT

This article describes daily groundwater depth data of peatlands in Indonesia. The data were recorded from eight in-situ stations spread over two peatland regions in Indonesia, namely Batanghari and Kubu Raya in Sumatra and Kalimantan. This article also presents experimental data describing soil water retention in the region. Water retention of peats determines the groundwater table's contribution to rewetting the soil surface. The datasets represent peatlands utilized for agriculture. Furthermore, the groundwater table of peatlands is a key variable controlling peat fire vulnerability, as described in the research article entitled 'An improved drought-fire assessment for managing fire risks in tropical peatlands' Taufik et al. (2022) and assessing the success of peat restoration projects. The groundwater datasets can be used as a benchmark for studies on modeling of hydrology and peat fire mitigation action.

11.
Sci Total Environ ; 808: 152086, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34863763

ABSTRACT

Anthropogenic activities, in addition to climate change caused the drying of Urmia Lake in Iran, since 2005. Dust storms blown from the dried lakebed have created serious environmental hazards in adjacent areas. These crises would jeopardise achieving United Nations Sustainable Development Goals (UN SDGs) and emphasise the need for evaluating the spatial distribution of soil enrichment of potentially toxic elements (PTEs) (As, Cr, Cu, Ni, Pb and Zn). Conventional assessment would require a costly sampling method to map potentially polluted areas. Digital soil mapping (DSM) has proved to be a cost-efficient method for soil mapping, however its application in mapping enrichment of PTEs in soil is still lacking. This study aims to map and project the potential pollution of PTEs in the Urmia Lake area using digital mapping techniques and Landsat-8 OLI satellite images. A total of 129 surficial soil samples were collected as ground control. Enrichment factors (EFs) of PTEs and the Modified Pollution Index (MPI) were spatially predicted using two machine learning models. Covariates were derived from a suite of Landsat-8 spectral indices. The bootstrapping method was used to analyse the uncertainties. The results showed that Random Forests performed well in estimating EFs of several PTEs. Spectral indices using NIR and SWIR bands were key to predict these PTEs and MPI. The digital maps demonstrated that the study area was enriched with As, Cu and Pb at moderate to significant levels. Regions under the lower ecological level (elevation <-1274 m) had significantly larger enrichment than those of higher elevation. Based on MPI, 43% of the area was categorised as moderately polluted, and 31% of the area was moderately-heavily polluted. Possible sources of PTEs were discharges from farmlands, landfills, and industries. Our results revealed that the Urmia Lake desiccating has caused severe environmental challenges and needs immediate restoration.


Subject(s)
Metals, Heavy , Soil Pollutants , Anthropogenic Effects , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Water
12.
PeerJ ; 9: e11042, 2021.
Article in English | MEDLINE | ID: mdl-33763307

ABSTRACT

The development of portable near-infrared spectroscopy (NIRS) combined with smartphone cloud-based chemometrics has increased the power of these devices to provide real-time in-situ crop nutrient analysis. This capability provides the opportunity to address nutrient deficiencies early to optimise yield. The agriculture sector currently relies on results delivered via laboratory analysis. This involves the collection and preparation of leaf or soil samples during the growing season that are time-consuming and costly. This delays farmers from addressing deficiencies by several weeks which impacts yield potential; hence, requires a faster solution. This study evaluated the feasibility of using NIRS in estimating different macro- and micronutrients in cotton leaf tissues, assessing the accuracy of a portable handheld NIR spectrometer (wavelength range of 1,350-2,500 nm). This study first evaluated the ability of NIRS to predict leaf nutrient levels using dried and ground cotton leaf samples. The results showed the high accuracy of NIRS in predicting essential macronutrients (0.76 ≤ R 2 ≤ 0.98 for N, P, K, Ca, Mg and S) and most micronutrients (0.64 ≤ R 2 ≤ 0.81 for Fe, Mn, Cu, Mo, B, Cl and Na). The results showed that the handheld NIR spectrometer is a practical option to accurately measure leaf nutrient concentrations. This research then assessed the possibility of applying NIRS on fresh leaves for potential in-field applications. NIRS was more accurate in estimating cotton leaf nutrients when applied on dried and ground leaf samples. However, the application of NIRS on fresh leaves was still quite accurate. Using fresh leaves, the prediction accuracy was reduced by 19% for macronutrients and 11% for micronutrients, compared to dried and ground samples. This study provides further evidence on the efficacy of using NIRS for field estimations of cotton nutrients in combination with a nutrient decision support tool, with an accuracy of 87.3% for macronutrients and 86.6% for micronutrients. This application would allow farmers to manage nutrients proactively to avoid yield penalties or environmental impacts.

13.
PeerJ ; 8: e10106, 2020.
Article in English | MEDLINE | ID: mdl-33083142

ABSTRACT

Surface air temperature (T a) required for real-time environmental modelling applications should be spatially quantified to capture the nuances of local-scale climates. This study created near real-time air temperature maps at a high spatial resolution across Australia. This mapping is achieved using the thin plate spline interpolation in concert with a digital elevation model and 'live' recordings garnered from 534 telemetered Australian Bureau of Meteorology automatic weather station (AWS) sites. The interpolation was assessed using cross-validation analysis in a 1-year period using 30-min interval observation. This was then applied to a fully automated mapping system-based in the R programming language-to produce near real-time maps at sub-hourly intervals. The cross-validation analysis revealed broad similarities across the seasons with mean-absolute error ranging from 1.2 °C (autumn and summer) to 1.3 °C (winter and spring), and corresponding root-mean-square error in the range 1.6 °C to 1.7 °C. The R 2 and concordance correlation coefficient (Pc ) values were also above 0.8 in each season indicating predictions were strongly correlated to the validation data. On an hourly basis, errors tended to be highest during the late afternoons in spring and summer from 3 pm to 6 pm, particularly for the coastal areas of Western Australia. The mapping system was trialled over a 21-day period from 1 June 2020 to 21 June 2020 with majority of maps completed within 28-min of AWS site observations being recorded. All outputs were displayed in a web mapping application to exemplify a real-time application of the outputs. This study found that the methods employed would be highly suited for similar applications requiring real-time processing and delivery of climate data at high spatiotemporal resolutions across a considerably large land mass.

14.
Glob Chang Biol ; 26(8): 4583-4600, 2020 08.
Article in English | MEDLINE | ID: mdl-32391633

ABSTRACT

Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2 O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2  ha-1  year-1 ) than in natural forest (median = 35.9 Mg CO2  ha-1  year-1 ). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2  ha-1  year-1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2 O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha-1  year-1 ). Deeper groundwater levels induced high N2 O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.


Subject(s)
Greenhouse Gases , Soil , Carbon Dioxide/analysis , Ecosystem , Methane/analysis , Nitrous Oxide/analysis
15.
Sci Total Environ ; 702: 134723, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31731131

ABSTRACT

Microplastics are emerging pollutants that exist in our environment. Microplastics are synthetic polymers that have particles size smaller than 5 mm. Rapid screening of microplastics contamination in the soil could assist in identifying anomalous concentrations of microplastics in the terrestrial environment. Because there is no rule on the maximum concentration limit on how much microplastics can exist within the soil, the concentration of microplastics collected from industrial areas around metropolitan Sydney was used as a baseline. Spectra obtained from the visible-near-infrared (vis-NIR) spectra has been shown to be feasible in predicting microplastics in the soil. Instead of creating a regression model predicting the concentration of microplastic, a classification model for screening was proposed. A convolutional neural network (CNN) model was trained to classify the soil sample into various degrees of contamination based on concentration. We also delved into the CNN model to understand how the CNN model classifies the spectral data input. The model performance was first tested on two levels of classification (contaminated vs. non-contaminated). The model was able to classify the uncontaminated samples into the appropriate class more accurately than the contaminated samples. When the number of classes were gradually increased, the classification accuracy for the higher level of contaminated samples improved. Transfer learning CNN model further improved the classification prediction only on the extremes, but not the intermediate classes.

16.
PeerJ ; 6: e5722, 2018.
Article in English | MEDLINE | ID: mdl-30310751

ABSTRACT

BACKGROUND: The use of visible-near infrared (vis-NIR) spectroscopy for rapid soil characterisation has gained a lot of interest in recent times. Soil spectra absorbance from the visible-infrared range can be calibrated using regression models to predict a set of soil properties. The accuracy of these regression models relies heavily on the calibration set. The optimum sample size and the overall sample representativeness of the dataset could further improve the model performance. However, there is no guideline on which sampling method should be used under different size of datasets. METHODS: Here, we show different sampling algorithms performed differently under different data size and different regression models (Cubist regression tree and Partial Least Square Regression (PLSR)). We analysed the effect of three sampling algorithms: Kennard-Stone (KS), conditioned Latin Hypercube Sampling (cLHS) and k-means clustering (KM) against random sampling on the prediction of up to five different soil properties (sand, clay, carbon content, cation exchange capacity and pH) on three datasets. These datasets have different coverages: a European continental dataset (LUCAS, n = 5,639), a regional dataset from Australia (Geeves, n = 379), and a local dataset from New South Wales, Australia (Hillston, n = 384). Calibration sample sizes ranging from 50 to 3,000 were derived and tested for the continental dataset; and from 50 to 200 samples for the regional and local datasets. RESULTS: Overall, the PLSR gives a better prediction in comparison to the Cubist model for the prediction of various soil properties. It is also less prone to the choice of sampling algorithm. The KM algorithm is more representative in the larger dataset up to a certain calibration sample size. The KS algorithm appears to be more efficient (as compared to random sampling) in small datasets; however, the prediction performance varied a lot between soil properties. The cLHS sampling algorithm is the most robust sampling method for multiple soil properties regardless of the sample size. DISCUSSION: Our results suggested that the optimum calibration sample size relied on how much generalization the model had to create. The use of the sampling algorithm is beneficial for larger datasets than smaller datasets where only small improvements can be made. KM is suitable for large datasets, KS is efficient in small datasets but results can be variable, while cLHS is less affected by sample size.

17.
Sci Rep ; 8(1): 11725, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082740

ABSTRACT

Soil microbial communities directly affect soil functionality through their roles in the cycling of soil nutrients and carbon storage. Microbial communities vary substantially in space and time, between soil types and under different land management. The mechanisms that control the spatial distributions of soil microbes are largely unknown as we have not been able to adequately upscale a detailed analysis of the microbiome in a few grams of soil to that of a catchment, region or continent. Here we reveal that soil microbes along a 1000 km transect have unique spatial structures that are governed mainly by soil properties. The soil microbial community assessed using Phospholipid Fatty Acids showed a strong gradient along the latitude gradient across New South Wales, Australia. We found that soil properties contributed the most to the microbial distribution, while other environmental factors (e.g., temperature, elevation) showed lesser impact. Agricultural activities reduced the variation of the microbial communities, however, its influence was local and much less than the overall influence of soil properties. The ability to predict the soil and environmental factors that control microbial distribution will allow us to predict how future soil and environmental change will affect the spatial distribution of microbes.


Subject(s)
Microbiota , Soil Microbiology , Australia , Ecosystem , Principal Component Analysis
18.
MethodsX ; 5: 551-560, 2018.
Article in English | MEDLINE | ID: mdl-30013943

ABSTRACT

While traditional laboratory methods of determining soil organic carbon (SOC) content are generally simple, this becomes more challenging when carbonates are present in the soil; such is commonly found in semi-arid areas. Additionally, soil inorganic carbon (SIC) content itself is difficult to determine. This study uses visible near infrared (VisNIR) spectra to predict SOC and SIC contents of samples, and the impact of including soil pH and soil total carbon (STC) data as predictor variables was evaluated. The results indicated that combining available soil pH and STC content data with VisNIR spectra dramatically improved prediction accuracy of the Cubist models. Using the full suite of predictor variables, Cubist models trained on the calibration dataset (75%) could predict the validation dataset (25%) for SOC content with a Lin's concordance correlation coefficient (LCCC) of 0.94, and an LCCC of 0.83 for SIC content. This is compared to an LCCC of 0.81 and 0.35 for SOC and SIC content, respectively, when no ancillary soil data was included with VisNIR spectra as predictor variables. These results suggest that there may be promise for using other readily available soil data in combination with VisNIR spectra to improve the predictions of different soil properties. •It can be laborious and expensive to measure soil organic and inorganic carbon content with traditional laboratory methods, and there has been recent focus on using spectroscopic techniques to overcome this.•This study demonstrates that combining ancillary soil data (pH and total carbon content) with these spectroscopic techniques can considerably improve predictions of SOC and SIC content.

19.
PeerJ ; 6: e4659, 2018.
Article in English | MEDLINE | ID: mdl-29682425

ABSTRACT

Soil colour is often used as a general purpose indicator of internal soil drainage. In this study we developed a necessarily simple model of soil drainage which combines the tacit knowledge of the soil surveyor with observed matrix soil colour descriptions. From built up knowledge of the soils in our Lower Hunter Valley, New South Wales study area, the sequence of well-draining → imperfectly draining → poorly draining soils generally follows the colour sequence of red → brown → yellow → grey → black soil matrix colours. For each soil profile, soil drainage is estimated somewhere on a continuous index of between 5 (very well drained) and 1 (very poorly drained) based on the proximity or similarity to reference soil colours of the soil drainage colour sequence. The estimation of drainage index at each profile incorporates the whole-profile descriptions of soil colour where necessary, and is weighted such that observation of soil colour at depth and/or dominantly observed horizons are given more preference than observations near the soil surface. The soil drainage index, by definition disregards surficial soil horizons and consolidated and semi-consolidated parent materials. With the view to understanding the spatial distribution of soil drainage we digitally mapped the index across our study area. Spatial inference of the drainage index was made using Cubist regression tree model combined with residual kriging. Environmental covariates for deterministic inference were principally terrain variables derived from a digital elevation model. Pearson's correlation coefficients indicated the variables most strongly correlated with soil drainage were topographic wetness index (-0.34), mid-slope position (-0.29), multi-resolution valley bottom flatness index (-0.29) and vertical distance to channel network (VDCN) (0.26). From the regression tree modelling, two linear models of soil drainage were derived. The partitioning of models was based upon threshold criteria of VDCN. Validation of the regression kriging model using a withheld dataset resulted in a root mean square error of 0.90 soil drainage index units. Concordance between observations and predictions was 0.49. Given the scale of mapping, and inherent subjectivity of soil colour description, these results are acceptable. Furthermore, the spatial distribution of soil drainage predicted in our study area is attuned with our mental model developed over successive field surveys. Our approach, while exclusively calibrated for the conditions observed in our study area, can be generalised once the unique soil colour and soil drainage relationship is expertly defined for an area or region in question. With such rules established, the quantitative components of the method would remain unchanged.

20.
Sci Total Environ ; 631-632: 377-389, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29525716

ABSTRACT

Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...