Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19003, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36347908

ABSTRACT

Quantum machine learning for predicting the physical properties of polymer materials based on the molecular descriptors of monomers was investigated. Under the stochastic variation of the expected predicted values obtained from quantum circuits due to finite sampling, the methods proposed in previous works did not make sufficient progress in optimizing the parameters. To enable parameter optimization despite the presence of stochastic variations in the expected values, quantum circuits that improve prediction accuracy without increasing the number of parameters and parameter optimization methods that are robust to stochastic variations in the expected predicted values, were investigated. The multi-scale entanglement renormalization ansatz circuit improved the prediction accuracy without increasing the number of parameters. The stochastic gradient descent method using the parameter-shift rule for gradient calculation was shown to be robust to sampling variability in the expected value. Finally, the quantum machine learning model was trained on an actual ion-trap quantum computer. At each optimization step, the coefficient of determination [Formula: see text] improved equally on the actual machine and simulator, indicating that our findings enable the training of quantum circuits on the actual quantum computer to the same extent as on the simulator.

2.
Phys Chem Chem Phys ; 24(14): 8439-8452, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35343527

ABSTRACT

Variational quantum eigensolver (VQE)-based quantum chemical calculations have been extensively studied as a computational model using noisy intermediate-scale quantum devices. The VQE uses a parametrized quantum circuit defined through an "ansatz" to generate approximated wave functions, and the appropriate choice of an ansatz is the most important step. Because most chemistry problems focus on the energy difference between two electronic states or structures, calculating the total energies in different molecular structures with the same accuracy is essential to correctly understand chemistry and chemical processes. In this context, the development of ansatzes that are capable of describing electronic structures of strongly correlated systems accurately is an important task. Here we applied a conventional unitary coupled cluster (UCC) and a newly developed multireference unitary coupled cluster with partially generalized singles and doubles (MR-UCCpGSD) ansatzes to the quasi-reaction pathway of Be insertion into H2, LiH molecule under covalent bond dissociation, and a rectangular tetra-hydrogen cluster known as a P4 cluster; these are representative systems in which the static electron correlation effect is prominent. Our numerical simulations revealed that the UCCSD ansatz exhibits extremely slow convergence behaviour around the point where an avoided crossing occurs in the Be + H2 → BeH2 reaction pathway, resulting in a large discrepancy of the simulated VQE energy from the full-configuration interaction (full-CI) value. By contrast, the MR-UCCpGSD ansatz can give more reliable results with respect to total energy and the overlap with the full-CI solution, insisting the importance of multiconfigurational treatments in the calculations of strongly correlated systems. The MR-UCCpGSD ansatz allows us to compute the energy with the same accuracy regardless of the strength of multiconfigurational character, which is an essential property to discuss energy differences of various molecular systems.

3.
Sci Rep ; 12(1): 197, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34996901

ABSTRACT

Finding a Hadamard matrix (H-matrix) among all possible binary matrices of corresponding order is a hard problem that can be solved by a quantum computer. Due to the limitation on the number of qubits and connections in current quantum processors, only low order H-matrix search of orders 2 and 4 were implementable by previous method. In this paper, we show that by adopting classical searching techniques of the H-matrices, we can formulate new quantum computing methods for finding higher order ones. We present some results of finding H-matrices of order up to more than one hundred and a prototypical experiment of the classical-quantum resource balancing method that yields a 92-order H-matrix previously found by Jet Propulsion Laboratory researchers in 1961 using a mainframe computer. Since the exactness of the solutions can be verified by an orthogonality test performed in polynomial time; which is untypical for optimization of hard problems, the proposed method can potentially be used for demonstrating practical quantum supremacy in the near future.

4.
Sci Rep ; 9(1): 14380, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31591411

ABSTRACT

Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing quantum annealing machine (QAM) that allows up to quadratic terms, whereas the problem naturally introduces higher order ones. For an M-order H-matrix, such a limitation increases the number of variables from M2 to (M3 + M2 - M)/2, which makes the formulation of the Hamiltonian too exhaustive to do by hand. We use symbolic computing techniques to manage this problem. Three related cases are discussed: (1) finding N < M orthogonal binary vectors, (2) finding M-orthogonal binary vectors, which is equivalent to finding a H-matrix, and (3) finding N-deleted vectors of an M-order H-matrix. Solutions of the problems by a 2-body simulated annealing software and by an actual quantum annealing hardware are also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...