Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 120(26): 263003, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30004781

ABSTRACT

One of the most important atomic properties governing an element's chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626 21±0.000 05 eV. This work provides a stringent benchmark for state-of-the-art many-body atomic modeling that considers relativistic and quantum electrodynamic effects and paves the way for high-precision measurements of atomic properties of elements only available from heavy-ion accelerator facilities.

2.
Phys Rev Lett ; 120(23): 232503, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932712

ABSTRACT

Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton density distribution in ^{252,254}No isotopes. Finally, the hyperfine splitting of ^{253}No was evaluated, enabling a complementary measure of its (quadrupole) deformation, as well as an insight into the neutron single-particle wave function via the nuclear spin and magnetic moment.

3.
Phys Rev Lett ; 110(8): 082501, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473137

ABSTRACT

A novel approach based on the projection of the Penning-trap ion motion onto a position-sensitive detector opens the door to very accurate mass measurements on the ppb level even for short-lived nuclides with half-lives well below a second. In addition to the accuracy boost, the new method provides a superior resolving power by which low-lying isomeric states with excitation energy on the 10-keV level can be easily separated from the ground state. A measurement of the mass difference of ^{130}Xe and ^{129}Xe has demonstrated the great potential of the new approach.

4.
Phys Rev Lett ; 110(4): 041101, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-25166148

ABSTRACT

Modeling the composition of neutron-star crusts depends strongly on binding energies of neutron-rich nuclides near the N = 50 and N = 82 shell closures. Using a recent development of time-of-flight mass spectrometry for on-line purification of radioactive ion beams to access more exotic species, we have determined for the first time the mass of (82)Zn with the ISOLTRAP setup at the ISOLDE-CERN facility. With a robust neutron-star model based on nuclear energy-density-functional theory, we solve the general relativistic Tolman-Oppenheimer-Volkoff equations and calculate the neutron-star crust composition based on the new experimental mass. The composition profile is not only altered but now constrained by experimental data deeper into the crust than before.

5.
Science ; 337(6099): 1207-10, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22878498

ABSTRACT

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number Z = 114, 120, or 126 and neutron number N = 184 has been substantiated by the recent synthesis of new elements up to Z = 118. However, the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at N = 152.

6.
Phys Rev Lett ; 107(15): 152501, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-22107289

ABSTRACT

The theory of octupolar-excitation ion-cyclotron-resonance mass spectrometry is presented which predicts an increase of up to several orders of magnitude in resolving power under certain conditions. The new method has been applied for a direct Penning-trap mass-ratio determination of the (164)Er-(164)Dy mass doublet. (164)Er is a candidate for the search for neutrinoless double-electron capture. However, the measured Q(ϵϵ) value of 25.07(12) keV results in a half-life of 10(30) years for a 1 eV Majorana-neutrino mass.

7.
Phys Rev Lett ; 106(5): 052504, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21405389

ABSTRACT

In the search for the nuclide with the largest probability for neutrinoless double-electron capture, we have determined the Q(ϵϵ) value between the ground states of (152)Gd and (152)Sm by Penning-trap mass-ratio measurements. The new Q(ϵϵ) value of 55.70(18) keV results in a half-life of 10(26) yr for a 1 eV neutrino mass. With this smallest half-life among known 0νϵϵ transitions, (152)Gd is a promising candidate for the search for neutrinoless double-electron capture.

8.
Phys Rev Lett ; 102(11): 112501, 2009 Mar 20.
Article in English | MEDLINE | ID: mdl-19392194

ABSTRACT

The masses of the neutron-rich radon isotopes {223-229}Rn have been determined for the first time, using the ISOLTRAP setup at CERN ISOLDE. In addition, this experiment marks the first discovery of a new nuclide, 229Rn, by Penning-trap mass measurement. The new, high-accuracy data allow a fine examination of the mass surface, via the valence-nucleon interaction deltaV{pn}. The results reveal intriguing behavior, possibly reflecting either a N=134 subshell closure or an octupolar deformation in this region.

SELECTION OF CITATIONS
SEARCH DETAIL
...