Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1358323, 2024.
Article in English | MEDLINE | ID: mdl-38560359

ABSTRACT

Enhanced GABAergic neurotransmission contributes to impairment of motor coordination and gait and of cognitive function in different pathologies, including hyperammonemia and hepatic encephalopathy. Neuroinflammation is a main contributor to enhancement of GABAergic neurotransmission through increased activation of different pathways. For example, enhanced activation of the TNFα-TNFR1-NF-κB-glutaminase-GAT3 pathway and the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway in cerebellum of hyperammonemic rats enhances GABAergic neurotransmission. This is mediated by mechanisms affecting GABA synthesizing enzymes GAD67 and GAD65, total and extracellular GABA levels, membrane expression of GABAA receptor subunits, of GABA transporters GAT1 and GAT three and of chloride co-transporters. Reducing neuroinflammation reverses these changes, normalizes GABAergic neurotransmission and restores motor coordination. There is an interplay between GABAergic neurotransmission and neuroinflammation, which modulate each other and altogether modulate motor coordination and cognitive function. In this way, neuroinflammation may be also reduced by reducing GABAergic neurotransmission, which may also improve cognitive and motor function in pathologies associated to neuroinflammation and enhanced GABAergic neurotransmission such as hyperammonemia, hepatic encephalopathy or Parkinson's disease. This provides therapeutic targets that may be modulated to improve cognitive and motor function and other alterations such as fatigue in a wide range of pathologies. As a proof of concept it has been shown that antagonists of GABAA receptors such as bicuculline reduces neuroinflammation and improves cognitive and motor function impairment in rat models of hyperammonemia and hepatic encephalopathy. Antagonists of GABAA receptors are not ideal therapeutic tools because they can induce secondary effects. As a more effective treatment to reduce GABAergic neurotransmission new compounds modulating it by other mechanisms are being developed. Golexanolone reduces GABAergic neurotransmission by reducing the potentiation of GABAA receptor activation by neurosteroids such as allopregnanolone. Golexanolone reduces neuroinflammation and GABAergic neurotransmission in animal models of hyperammonemia, hepatic encephalopathy and cholestasis and this is associated with improvement of fatigue, cognitive impairment and motor incoordination. This type of compounds may be useful therapeutic tools to improve cognitive and motor function in different pathologies associated with neuroinflammation and increased GABAergic neurotransmission.

2.
Liver Int ; 44(2): 433-445, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010893

ABSTRACT

BACKGROUND AND AIMS: Many patients with the chronic cholestatic liver disease primary biliary cholangitis (PBC) show fatigue and cognitive impairment that reduces their quality of life. Likewise, rats with bile duct ligation (BDL) are a model of cholestatic liver disease. Current PBC treatments do not improve symptomatic alterations such as fatigue or cognitive impairment and new, more effective treatments are therefore required. Golexanolone reduces the potentiation of GABAA receptors activation by neurosteroids. Golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in rats with chronic hyperammonemia. The aims of the present study were to assess if golexanolone treatment improves fatigue and cognitive and motor function in cholestatic BDL rats and if this is associated with improvement of peripheral inflammation, neuroinflammation, and GABAergic neurotransmission in the cerebellum. METHODS: Rats were subjected to bile duct ligation. One week after surgery, oral golexanolone was administered daily to BDL and sham-operated controls. Fatigue was analysed in the treadmill, motor coordination in the motorater, locomotor gait in the Catwalk, and short-term memory in the Y-maze. We also analysed peripheral inflammation, neuroinflammation, and GABAergic neurotransmission markers by immunohistochemistry and Western blot. RESULTS: BDL induces fatigue, impairs memory and motor coordination, and alters locomotor gait in cholestatic rats. Golexanolone improves these alterations, and this was associated with improvement of peripheral inflammation, neuroinflammation, and GABAergic neurotransmission in the cerebellum. CONCLUSION: Golexanolone may have beneficial effects to treat fatigue, and motor and cognitive impairment in patients with the chronic cholestatic liver disease PBC.


Subject(s)
Cholestasis , Liver Diseases , Phenanthrenes , Animals , Rats , Ataxia , Bile Ducts/surgery , Cholestasis/complications , Cholestasis/drug therapy , Disease Models, Animal , Fatigue/drug therapy , Fatigue/etiology , Gait , Inflammation , Ligation , Neuroinflammatory Diseases , Quality of Life
3.
Eur J Neurol ; 30(10): 3032-3046, 2023 10.
Article in English | MEDLINE | ID: mdl-37340928

ABSTRACT

BACKGROUND: Neuroinflammation in the cerebral cortex of patients who died with liver cirrhosis and neuroinflammation, and neuronal death in the cerebellum of patients who died with steatohepatitis or cirrhosis, were reported. Hippocampal neuroinflammation could contribute to cognitive decline in patients with liver disease, but this has yet to be studied. The study aims were to assess if hippocampus from patients who died with steatohepatitis or cirrhosis showed: (i) glial activation, (ii) altered cytokine content, (iii) immune cell infiltration, (iv) neuronal apoptosis and (v) neuronal loss. METHODS: Post-mortem hippocampus was obtained from 6 controls, 19 patients with steatohepatitis (SH) and 4 patients with liver cirrhosis. SH patients were divided into SH1 (n = 9), SH2 (n = 6) and SH3 (n = 4) groups depending on disease severity. Glial activation, IL-1ß and TNFα content, CD4 lymphocyte and monocyte infiltration, neuronal apoptosis and neuronal loss were analyzed by immunohistochemistry. RESULTS: Patients who died in SH1 showed astrocyte activation, whereas those who died in SH2 also showed microglial activation, CD4 lymphocyte and monocyte infiltration, neuronal apoptosis and neuronal loss. These changes remained in patients in SH3, who also showed increased IL-1ß and TNFα. Patients who died of liver cirrhosis did not show CD4 lymphocyte infiltration, neuronal apoptosis or increase in TNFα, but still showed glial activation, increased IL-1ß and neuronal loss. CONCLUSIONS: Patients with steatohepatitis showed glial activation, immune cell infiltration, apoptosis and neuronal loss. Glial activation and neuronal loss remained in cirrhotic patients. This may explain the irreversibility of some cognitive alterations in hepatic encephalopathy. Cognitive reserve may contribute to different grades of cognitive impairment despite similar neuronal loss.


Subject(s)
Fatty Liver , Tumor Necrosis Factor-alpha , Humans , Neuroinflammatory Diseases , Liver Cirrhosis/complications , Fatty Liver/pathology , Hippocampus/pathology
4.
CNS Neurosci Ther ; 28(11): 1861-1874, 2022 11.
Article in English | MEDLINE | ID: mdl-35880480

ABSTRACT

AIMS: Hyperammonemic rats show peripheral inflammation, increased GABAergic neurotransmission and neuroinflammation in cerebellum and hippocampus which induce motor incoordination and cognitive impairment. Neuroinflammation enhances GABAergic neurotransmission in cerebellum by enhancing the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. Golexanolone reduces GABAA receptors potentiation by allopregnanolone. This work aimed to assess if treatment of hyperammonemic rats with golexanolone reduces peripheral inflammation and neuroinflammation and restores cognitive and motor function and to analyze underlying mechanisms. METHODS: Rats were treated with golexanolone and effects on peripheral inflammation, neuroinflammation, TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways, and cognitive and motor function were analyzed. RESULTS: Hyperammonemic rats show increased TNFα and reduced IL-10 in plasma, microglia and astrocytes activation in cerebellum and hippocampus, and impaired motor coordination and spatial and short-term memories. Treating hyperammonemic rats with golexanolone reversed changes in peripheral inflammation, microglia and astrocytes activation and restored motor coordination and spatial and short-term memory. This was associated with reversal of the hyperammonemia-enhanced activation in cerebellum of the TNFR1-glutaminase-GAT3 and TNFR1-CCL2-TrkB-KCC2 pathways. CONCLUSION: Reducing GABAA receptors activation with golexanolone reduces peripheral inflammation and neuroinflammation and improves cognitive and motor function in hyperammonemic rats. The effects identified would also occur in patients with hepatic encephalopathy and, likely, in other pathologies associated with neuroinflammation.


Subject(s)
Hyperammonemia , Symporters , Animals , Cognition , GABA-A Receptor Antagonists , Glutaminase/metabolism , Hyperammonemia/drug therapy , Hyperammonemia/metabolism , Inflammation/metabolism , Interleukin-10/metabolism , Neuroinflammatory Diseases , Pregnanolone , Rats , Rats, Wistar , Receptors, GABA-A , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Necrosis Factor-alpha/metabolism , gamma-Aminobutyric Acid/metabolism
5.
Biomedicines ; 10(6)2022 May 28.
Article in English | MEDLINE | ID: mdl-35740285

ABSTRACT

Patients with non-alcoholic fatty liver disease (NAFLD) may show mild cognitive impairment. Neuroinflammation in the hippocampus mediates cognitive impairment in rat models of minimal hepatic encephalopathy (MHE). Treatment with rifaximin reverses cognitive impairment in a large proportion of cirrhotic patients with MHE. However, the underlying mechanisms remain unclear. The aims of this work were to assess if rats with mild liver damage, as a model of NAFLD, show neuroinflammation in the hippocampus and impaired cognitive function, if treatment with rifaximin reverses it, and to study the underlying mechanisms. Mild liver damage was induced with carbon-tetrachloride. Infiltration of immune cells, glial activation, and cytokine expression, as well as glutamate receptors expression in the hippocampus and cognitive function were assessed. We assessed the effects of daily treatment with rifaximin on the alterations showed by these rats. Rats with mild liver damage showed hippocampal neuroinflammation, reduced membrane expression of glutamate N-methyl-D-aspartate (NMDA) receptor subunits, and impaired spatial memory. Increased C-C Motif Chemokine Ligand 2 (CCL2), infiltration of monocytes, microglia activation, and increased tumor necrosis factor α (TNFα) were reversed by rifaximin, that normalized NMDA receptor expression and improved spatial memory. Thus, rifaximin reduces neuroinflammation and improves cognitive function in rats with mild liver damage, being a promising therapy for patients with NAFLD showing mild cognitive impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...