Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(4): e15144, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37089289

ABSTRACT

Microstructure and texture evolution of directed-laser deposited super-duplex stainless-steel, in the as-received block, were characterized using light and electron microscopies and electron backscattered diffraction. Mechanical properties in different directions were studied. Local FCC-depleted and FCC-rich zones and extensive precipitation of oxides were detected at the matrix wherein the different types of reformed austenite were surrounded by the elongated coarse ferrite. A vertical gradient of austenite content, caused by overall change in cooling rate, generated a waning hardness distribution along the building direction. The texture of austenite across the different deposition layers was not as intense as that of the ferrite. A dominant ⟨ 001 ⟩ ⫽ND fibre, embedding strong Cube { 001 } ⟨ 100 ⟩ , was calculated for ferrite on the layer away from the bottom while the Goss { 011 } ⟨ 100 ⟩ appeared in the layer near the building substrate due to the considerable epitaxially developed grains. The less intensified multi-component texture of austenite at the layer near the substrate changed to ⟨ 011 ⟩ ⫽ND fibre adorned by Rotated-Goss and Goss components at the upper layers where an incomplete fibre { 001 } ⟨ u v w ⟩ with a major Rotated-Cube was also partially inherited from the parent phase. The inter-phase boundaries obeying Kurdjumov-Sachs orientation relationship were predominantly formed at all layers. A slight increase of Σ3 coincidence site lattice interfaces was observed in austenite across the build direction. The possible mechanical anisotropy was depressed due to complex and multi-component transformation texture of the austenite. The material showed brittleness corresponding to significantly high tensile strength and low impact toughness.

2.
Lab Chip ; 17(2): 293-303, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27934975

ABSTRACT

In this paper, we propose a simple method to embed transparent reactive materials in a microfluidic cell, and to observe in situ the dissolution of the material. As an example, we show how to obtain the dissolution rate of a calcite window of optical quality, dissolved in water and hydrochloric acid (HCl). These fluids circulate at controlled flowrates in a channel which is obtained by xurography: double sided tape is cut out with a cutter plotter and placed between the calcite window and a non-reactive support. While the calcite window reacts in contact with the acid, its topography is measured in situ every 10 s using an interference microscope, with a pixel resolution of 4.9 µm and a vertical resolution of 50 nm. In order to avoid inlet influence on the reaction, a thin layer of photoresist is added on the calcite surface at the inlet and outlet. This layer is also used as a non reactive reference surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...