Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34696077

ABSTRACT

Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging in the last twenty years. In up-to-date OCT literature, certain simplifying assumptions are made for the reconstructions, but for many applications, a more realistic description of the OCT imaging process is of interest. In mathematical models, for example, the incident angle of light onto the sample is usually neglected or a plane wave description for the light-sample interaction in OCT is used, which ignores almost completely the occurring effects within an OCT measurement process. In this article, we make a first step to a quantitative model by considering the measured intensity as a combination of back-scattered Gaussian beams affected by the system. In contrast to the standard plane wave simplification, the presented model includes system relevant parameters, such as the position of the focus and the spot size of the incident laser beam, which allow a precise prediction of the OCT data. The accuracy of the proposed model-after calibration of all necessary system parameters-is illustrated by simulations and validated by a comparison with experimental data obtained from a 1300 nm swept-source OCT system.


Subject(s)
Models, Theoretical , Tomography, Optical Coherence , Calibration
2.
GEM ; 9(1): 145-165, 2018.
Article in English | MEDLINE | ID: mdl-29606983

ABSTRACT

In this paper we provide for a first time, to our knowledge, a mathematical model for imaging an anisotropic, orthotropic medium with polarization-sensitive optical coherence tomography. The imaging problem is formulated as an inverse scattering problem in three dimensions for reconstructing the electrical susceptibility of the medium using Maxwell's equations. Our reconstruction method is based on the second-order Born-approximation of the electric field.

3.
Math Methods Appl Sci ; 40(3): 505-522, 2017 02.
Article in English | MEDLINE | ID: mdl-28133404

ABSTRACT

Optical coherence tomography (OCT) and photoacoustic tomography are emerging non-invasive biological and medical imaging techniques. It is a recent trend in experimental science to design experiments that perform photoacoustic tomography and OCT imaging at once. In this paper, we present a mathematical model describing the dual experiment. Because OCT is mathematically modelled by Maxwell's equations or some simplifications of it, whereas the light propagation in quantitative photoacoustics is modelled by (simplifications of) the radiative transfer equation, the first step in the derivation of a mathematical model of the dual experiment is to obtain a unified mathematical description, which in our case are Maxwell's equations. As a by-product, we therefore derive a new mathematical model of photoacoustic tomography based on Maxwell's equations. It is well known by now that without additional assumptions on the medium, it is not possible to uniquely reconstruct all optical parameters from either one of these modalities alone. We show that in the combined approach, one has additional information, compared with a single modality, and the inverse problem of reconstruction of the optical parameters becomes feasible. © 2016 The Authors. Mathematical Methods in the Applied Sciences Published by John Wiley & Sons Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL
...