Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 8031, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052804

ABSTRACT

Cancer cells inevitably interact with neighboring host tissue-resident cells during the process of metastatic colonization, establishing a metastatic niche to fuel their survival, growth, and invasion. However, the underlying mechanisms in the metastatic niche are yet to be fully elucidated owing to the lack of methodologies for comprehensively studying the mechanisms of cell-cell interactions in the niche. Here, we improve a split green fluorescent protein (GFP)-based genetically encoded system to develop secretory glycosylphosphatidylinositol-anchored reconstitution-activated proteins to highlight intercellular connections (sGRAPHIC) for efficient fluorescent labeling of tissue-resident cells that neighbor on and putatively interact with cancer cells in deep tissues. The sGRAPHIC system enables the isolation of metastatic niche-associated tissue-resident cells for their characterization using a single-cell RNA sequencing platform. We use this sGRAPHIC-leveraged transcriptomic platform to uncover gene expression patterns in metastatic niche-associated hepatocytes in a murine model of liver metastasis. Among the marker genes of metastatic niche-associated hepatocytes, we identify Lgals3, encoding galectin-3, as a potential pro-metastatic factor that accelerates metastatic growth and invasion.


Subject(s)
Liver Neoplasms , Humans , Mice , Animals , Liver Neoplasms/metabolism , Hepatocytes/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Extracellular Matrix/metabolism , Cell Communication
2.
Sci Rep ; 11(1): 22098, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34764369

ABSTRACT

Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.


Subject(s)
Antibodies, Monoclonal/immunology , Cell Surface Display Techniques/methods , Interleukin-2 Receptor alpha Subunit/immunology , Mammals/immunology , Protein Binding/immunology , Amino Acid Sequence , Animals , Antibody Affinity/immunology , Cell Line , Cell Line, Tumor , Flow Cytometry/methods , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Peptide Library
3.
Nat Commun ; 9(1): 2981, 2018 07 30.
Article in English | MEDLINE | ID: mdl-30061695

ABSTRACT

Although the current murine model of bone metastasis using intracardiac (IC) injection successfully recapitulates the process of bone metastasis, further progress in the study of bone metastasis requires a new model to circumvent some limitations of this model. Here, we present a new murine model of bone metastasis achieved by injecting cancer cells through the intra-caudal arterial (CA). This model does not require high technical proficiency, predominantly delivers cancer cells to bone marrow of hind limbs with much higher efficiency than IC injection, and greatly shortens the period of overt bone metastasis development. Moreover, CA injection barely causes acute death of mice, enabling us to inject a larger number of cancer cells to further accelerate the development of bone metastasis with a wide variety of cell lines. Our model may open a new avenue for understanding the bone metastatic processes and development of drugs preventing bone metastasis and recurrence.


Subject(s)
Arteries , Bone Neoplasms/pathology , Disease Models, Animal , Neoplasm Transplantation/methods , Animals , Bone Neoplasms/secondary , Cell Line, Tumor , Female , Femur/pathology , Humans , MCF-7 Cells , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neoplasm Metastasis , Neoplasm Recurrence, Local/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...