Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Genes (Basel) ; 14(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003028

ABSTRACT

The patient reported here underwent hematopoietic stem cell transplantation (HSCT) due to chronic granulomatous disease (CGD) caused by biallelic mutations of the NCF1 gene. Two years later, he developed AML, which was unexpected and was recognized via sex-mismatched chromosomes as deriving from the donor cells; the patient was male, and the donor was his sister. Donor cell leukemia (DCL) is very rare, and it had never been reported in patients with CGD after HSCT. In the subsequent ten years, the AML relapsed three times and the patient underwent chemotherapy and three further HSCTs; donors were the same sister from the first HSCT, an unrelated donor, and his mother. The patient died during the third relapse. The DCL was characterized since onset by an acquired translocation between chromosomes 9 and 11, with a molecular rearrangement between the MLL and MLLT3 genes-a quite frequent cause of AML. In all of the relapses, the malignant clone had XX sex chromosomes and this rearrangement, thus indicating that it was always the original clone derived from the transplanted sister's cells. It exhibited the ability to remain quiescent in the BM during repeated chemotherapy courses, remission periods and HSCT. The leukemic clone then acquired different additional anomalies during the ten years of follow-up, with cytogenetic results characterized both by anomalies frequent in AML and by different, non-recurrent changes. This type of cytogenetic course is uncommon in AML.


Subject(s)
Granulomatous Disease, Chronic , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Male , Granulomatous Disease, Chronic/genetics , Granulomatous Disease, Chronic/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Unrelated Donors , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/pathology , Translocation, Genetic
2.
Sci Rep ; 13(1): 11978, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488251

ABSTRACT

The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.


Subject(s)
Archaeology , Burial , Humans , Body Remains , Bone Matrix , Italy
3.
Front Genet ; 13: 896749, 2022.
Article in English | MEDLINE | ID: mdl-36035165

ABSTRACT

Background: Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients. Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study. Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal. Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy.

4.
Genes (Basel) ; 13(8)2022 07 23.
Article in English | MEDLINE | ID: mdl-35893049

ABSTRACT

Introduction. Shwachman-Diamond Syndrome (SDS) is an autosomal-recessive disorder characterized by neutropenia, pancreatic exocrine insufficiency, skeletal dysplasia, and an increased risk for leukemic transformation. Biallelic mutations in the SBDS gene have been found in about 90% of patients. The clinical spectrum of SDS in patients is wide, and variability has been noticed between different patients, siblings, and even within the same patient over time. Herein, we present two SDS siblings (UPN42 and UPN43) carrying the same SBDS mutations and showing relevant differences in their phenotypic presentation. Study aim. We attempted to understand whether other germline variants, in addition to SBDS, could explain some of the clinical variability noticed between the siblings. Methods. Whole-exome sequencing (WES) was performed. Human Phenotype Ontology (HPO) terms were defined for each patient, and the WES data were analyzed using the eVai and DIVAs platforms. Results. In UPN43, we found and confirmed, using Sanger sequencing, a novel de novo variant (c.10663G > A, p.Gly3555Ser) in the KMT2A gene that is associated with autosomal-dominant Wiedemann−Steiner Syndrome. The variant is classified as pathogenic according to different in silico prediction tools. Interestingly, it was found to be related to some of the HPO terms that describe UPN43. Conclusions. We postulate that the KMT2A variant found in UPN43 has a concomitant and co-occurring clinical effect, in addition to SBDS mutation. This dual molecular effect, supported by in silico prediction, could help to understand some of the clinical variations found among the siblings. In the future, these new data are likely to be useful for personalized medicine and therapy for selected cases.


Subject(s)
Bone Marrow Diseases , Exocrine Pancreatic Insufficiency , Histone-Lysine N-Methyltransferase , Myeloid-Lymphoid Leukemia Protein , Shwachman-Diamond Syndrome , Biological Variation, Population , Bone Marrow Diseases/genetics , Exocrine Pancreatic Insufficiency/genetics , Histone-Lysine N-Methyltransferase/genetics , Humans , Myeloid-Lymphoid Leukemia Protein/genetics , Shwachman-Diamond Syndrome/genetics , Siblings
5.
Mol Cytogenet ; 14(1): 54, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34819134

ABSTRACT

BACKGROUND: An isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q), are the most frequent anomalies in the bone marrow of patients with Shwachman-Diamond syndrome, which is caused in most cases by mutations of the SBDS gene. These clonal changes imply milder haematological symptoms and lower risk of myelodysplastic syndromes and acute myeloid leukaemia, thanks to already postulated rescue mechanisms. RESULTS: Bone marrow from fourteen patients exhibiting either the i(7)(q10) or the del(20)(q) and coming from two large cohorts of patients, were subjected to chromosome analyses, Fluorescent In Situ Hybridization with informative probes and array-Comparative Genomic Hybridization. One patient with the i(7)(q10) showed a subsequent clonal rearrangement of the normal chromosome 7 across years. Four patients carrying the del(20)(q) evolved further different del(20)(q) independent clones, within a single bone marrow sample, or across sequential samples. One patient with the del(20)(q), developed a parallel different clone with a duplication of chromosome 3 long arm. Eight patients bore the del(20)(q) as the sole chromosomal abnormality. An overall overview of patients with the del(20)(q), also including cases already reported, confirmed that all the deletions were interstitial. The loss of material varied from 1.7 to 26.9 Mb and resulted in the loss of the EIF6 gene in all patients. CONCLUSIONS: Although the i(7)(q) and the del(20)(q) clones are frequent and clinically benign in Shwachman Diamond-syndrome, in the present work we show that they may rearrange, may be lost and then reconstructed de novo, or may evolve with independent clones across years. These findings unravel a striking selective pressure exerted by SBDS deficiency driving to karyotype instability and to specific clonal abnormalities.

6.
Mol Cytogenet ; 13: 1, 2020.
Article in English | MEDLINE | ID: mdl-31908654

ABSTRACT

BACKGROUND: Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue. The literature offers few expression studies on SDS. RESULTS: We report the expression analysis of bone marrow (BM) cells of patients with SDS in relation to normal karyotype or to the presence of clonal chromosome anomalies: del (20)(q) (five cases), i (7)(q10) (one case), and other anomalies (two cases). The study was performed using the microarray technique considering the whole transcriptome (WT) and three gene subsets selected as relevant in BM functions. The expression patterns of nine healthy controls and SDS patients with or without chromosome anomalies in the bone marrow showed clear differences. CONCLUSIONS: There is a significant difference between gene expression in the BM of SDS patients and healthy subjects, both at the WT level and in the selected gene sets. The deletion del (20)(q), with the EIF6 gene consistently lost, even in patients with the smallest losses of material, changes the transcription pattern: a low proportion of abnormal cells led to a pattern similar to SDS patients without acquired anomalies, whereas a high proportion yields a pattern similar to healthy subjects. Hence, the benign prognostic value of del (20)(q). The case of i (7)(q10) showed a transcription pattern similar to healthy subjects, paralleling the positive prognostic role of this anomaly as well.

8.
Br J Haematol ; 184(6): 974-981, 2019 03.
Article in English | MEDLINE | ID: mdl-30585299

ABSTRACT

In Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene. Interestingly, array single nucleotide polymorphisms (SNPs) showed copy neutral loss of heterozygosity for EIF6 region in cases without del(20)(q). No preferential parental origin of the deleted chromosome 20 was detected by microsatellite analysis in six SDS patients. Our patients showed a very mild haematological condition, and none evolved into BM aplasia or MDS/AML. We extend the benign prognostic significance of del(20)(q) and loss of EIF6 to the haematological features of these patients, consistently characterized by mild hypoplastic BM, no or mild neutropenia, anaemia and thrombocytopenia. Some odd results obtained in microsatellite and SNP-array analysis demonstrate a peculiar genomic instability, in an attempt to improve BM function through the acquisition of the del(20)(q).


Subject(s)
Chromosomes, Human, Pair 20/genetics , Genomic Instability/genetics , Shwachman-Diamond Syndrome/genetics , Adolescent , Adult , Child , Female , Humans , Male , Prognosis , Shwachman-Diamond Syndrome/pathology , Young Adult
9.
Genes Chromosomes Cancer ; 56(1): 51-58, 2017 01.
Article in English | MEDLINE | ID: mdl-27553422

ABSTRACT

Shwachman-Diamond syndrome (SDS) (OMIM 260400) is a rare autosomal recessive disease characterized by exocrine pancreatic insufficiency, skeletal, and hematological abnormalities and bone marrow (BM) dysfunction. Mutations in the SBDS gene cause SDS. Clonal chromosome anomalies are often present in BM, i(7)(q10) and del(20q) being the most frequent ones. We collected 6 SDS cases with del(20q): a cluster of imprinted genes, including L3MBTL1 and SGK2 is present in the deleted region. Only the paternal allele is expressed for these genes. Based on these data, we made the hypothesis that the loss of this region, in relation to parental origin of deletion, may be of relevance for the hematological phenotype. By comparing hematological data of our 6 cases with a group of 20 SDS patients without evidence of del(20q) in BM, we observed a significant difference for Hb levels (P < 0.012), and a difference slightly above the significance level for RBC counts (P < 0.053): in both cases the values were higher in patients with del(20q). We also report preliminary evidence for an increased number of BFU-E colonies in cases with paternal deletion, data on the presence of the deletion in colonies and in mature circulating lymphocytes. © 2016 Wiley Periodicals, Inc.


Subject(s)
Bone Marrow Diseases/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomes, Human, Pair 20/genetics , Exocrine Pancreatic Insufficiency/genetics , Genomic Imprinting , Immediate-Early Proteins/genetics , Lipomatosis/genetics , Protein Serine-Threonine Kinases/genetics , Sequence Deletion , Biomarkers, Tumor , Chromosome Aberrations , Follow-Up Studies , Humans , Mutation/genetics , Neoplasm Staging , Phenotype , Prognosis , Repressor Proteins , Retrospective Studies , Shwachman-Diamond Syndrome , Tumor Suppressor Proteins
12.
Mol Syndromol ; 4(3): 119-24, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23653583

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Mutations in either ENG or ACVRL1 account for around 85% of cases, and 10% are large deletions and duplications. Here we present a large novel deletion in ACVRL1 gene and its molecular characterization in a 3 generation Italian family. We employed short tandem repeats (STRs) analysis, direct sequencing, multiplex ligation-dependant probe amplification (MLPA) analysis, and 'deletion-specific' PCR methods. STRs Analysis at ENG and ACVRL1 loci suggested a positive linkage for ACVRL1. Direct sequencing of this gene did not identify any mutations, while MLPA identified a large deletion. These results were confirmed and exactly characterized with a 'deletion-specific' PCR: the deletion size is 4,594 bp and breakpoints in exon 3 and intron 8 show the presence of short direct repeats of 7 bp [GCCCCAC]. We hypothesize, as causative molecular mechanism, the replication slippage model. Understanding the fine mechanisms associated with genomic rearrangements may indicate the nonrandomness of these events, highlighting hot spots regions. The complete concordance among MLPA, STRs analysis and 'deletion-specific PCR' supports the usefulness of MLPA in HHT molecular analysis.

14.
Haematologica ; 97(7): 1057-63, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22271888

ABSTRACT

BACKGROUND: Shwachman-Diamond syndrome is an autosomal recessive disorder in which severe bone marrow dysfunction causes neutropenia and an increased risk of leukemia. Recently, novel particulate cytoplasmic structures, rich in ubiquitinated and proteasomal proteins, have been detected in epithelial cells and neutrophils from patients with Helicobacter pylori gastritis and several epithelial neoplasms. DESIGN AND METHODS: Blood neutrophils from 13 cases of Shwachman-Diamond syndrome - ten with and three without SBDS gene mutation - and ten controls were investigated by confocal microscopy and ultrastructural immunocytochemistry using antibodies against ubiquitinated proteins, proteasomes, p62 protein, and Helicobacter pylori VacA, urease and outer membrane proteins. RESULTS: Many extensively disseminated particulate cytoplasmic structures, accounting for 22.78 ± 5.57% (mean ± standard deviation) of the total cytoplasm, were found in blood neutrophils from mutated Shwachman-Diamond syndrome patients. The particulate cytoplasmic structures showed immunoreactivity for polyubiquitinated proteins and proteasomes, but no reactivity for Helicobacter pylori products, which are present in particulate cytoplasmic structures of Helicobacter pylori-positive gastritis. Neutrophils from patients with Shwachman-Diamond syndrome frequently showed p62-positive autophagic vacuoles and apoptotic changes in 5% of cells. No particulate cytoplasmic structures were observed in most control neutrophils; however, in a few cells from two cases we noted focal development of minute particulate cytoplasmic structures, accounting for 0.74 ± 0.56% of the total cytoplasm (P<0.001 versus particulate cytoplasmic structures from mutated Shwachman-Diamond syndrome patients). Neutrophils from non-mutated Shwachman-Diamond-syndrome-like patients resembled controls in two cases, and a third case showed particulate cytoplasmic structure patterns intermediate between those in controls and those in mutated Shwachman-Diamond syndrome patients. CONCLUSIONS: Particulate cytoplasmic structures are a prominent feature of neutrophils from patients with Shwachman-Diamond syndrome. They may help us to understand the mechanism of granulocyte dysfunction and the neoplastic risk of the disease.


Subject(s)
Bone Marrow Diseases/pathology , Bone Marrow/pathology , Cytoplasmic Structures/metabolism , Exocrine Pancreatic Insufficiency/pathology , Lipomatosis/pathology , Neutropenia/pathology , Neutrophils/metabolism , Proteasome Endopeptidase Complex/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bone Marrow/metabolism , Bone Marrow Diseases/complications , Bone Marrow Diseases/genetics , Child , Child, Preschool , Cytoplasmic Structures/genetics , Cytoplasmic Structures/ultrastructure , Exocrine Pancreatic Insufficiency/complications , Exocrine Pancreatic Insufficiency/genetics , Female , Gene Expression , Humans , Immunohistochemistry , Lipomatosis/complications , Lipomatosis/genetics , Male , Microscopy, Confocal , Mutation , Neutropenia/complications , Neutropenia/genetics , Neutrophils/ultrastructure , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/ultrastructure , Proteins/genetics , Proteins/metabolism , Sequestosome-1 Protein , Shwachman-Diamond Syndrome , Ubiquitin/metabolism , Ubiquitinated Proteins/genetics , Ubiquitinated Proteins/metabolism
15.
Gut ; 60(6): 788-98, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21257987

ABSTRACT

OBJECTIVE: External fistulas represent a disabling manifestation of Crohn's disease with a difficult curability and a high relapse rate despite a large therapeutic armamentarium. Stem cell therapy is a novel and promising approach for treatment of chronic inflammatory conditions. We therefore investigated the feasibility, safety and efficacy of serial intrafistular injections of autologous bone marrow-derived mesenchymal stromal cells (MSCs) in the treatment of fistulising Crohn's disease. PATIENTS AND METHODS: We enrolled 12 consecutive outpatients (eight males, median age 32 years) refractory to or unsuitable for current available therapies. MSCs were isolated from bone marrow and expanded ex vivo to be used for both therapeutic and experimental purposes. Ten patients (two refused) received intrafistular MSC injections (median 4) scheduled every 4 weeks, and were monitored by surgical, MRI and endoscopic evaluation for 12 months afterwards. The feasibility of obtaining at least 50×106 MSCs from each patient, the appearance of adverse events, and the efficacy in terms of fistula healing and reduction of both Crohn's disease and perianal disease activity indexes were evaluated. In addition, the percentage of both mucosal and circulating regulatory T cells expressing FoxP3, and the ability of MSCs to influence mucosal T cell apoptosis were investigated. RESULTS: MSC expansion was successful in all cases; sustained complete closure (seven cases) or incomplete closure (three cases) of fistula tracks with a parallel reduction of Crohn's disease and perianal disease activity indexes (p < 0.01 for both), and rectal mucosal healing were induced by treatment without any adverse effects. The percentage of mucosal and circulating regulatory T cells significantly increased during the treatment and remained stable until the end of follow up (p < 0.0001 and p < 0.01, respectively). Furthermore, MSCs have been proven to affect mucosal T cell apoptotic rate. CONCLUSIONS: Locally injected MSCs represent a feasible, safe and beneficial therapy in refractory fistulising Crohn's disease.


Subject(s)
Crohn Disease/therapy , Mesenchymal Stem Cell Transplantation/methods , Rectal Fistula/therapy , Adolescent , Adult , Anus Diseases/diagnosis , Anus Diseases/etiology , Anus Diseases/immunology , Anus Diseases/therapy , Apoptosis/immunology , Coculture Techniques , Crohn Disease/complications , Crohn Disease/immunology , Cytokines/biosynthesis , Cytokines/blood , Feasibility Studies , Female , Humans , Immunity, Mucosal , Immunophenotyping , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/immunology , Rectal Fistula/diagnosis , Rectal Fistula/etiology , Rectal Fistula/immunology , T-Lymphocytes, Regulatory/immunology , Treatment Outcome , Wound Healing , Young Adult
16.
BMJ Case Rep ; 20102010.
Article in English | MEDLINE | ID: mdl-22315638

ABSTRACT

Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant disorder characterised by epistaxis, telangiectases, and multiorgan vascular dysplasia. Mutations of the ENG and ACVRL1 genes cause at least 80% of cases. We report the first case of merkeloma found in a patient with HHT carrying an ENG mutation. We analysed the tumour with immunohistochemical methods using primary antibodies against CD105 (endoglin), TGF-ß, Smad4, CD31 and CD34. Tumour cells were positive for Smad4, weakly positive for TGF-ß, and negative for CD105. Vasal endothelial cells were highly positive for CD105, CD31 and CD34. No remarkable differences between cancer and normal cells in our patient or between the patient's merkeloma and two control merkelomas were observed. The presence of a merkeloma in an HHT patient could be an occasional association, but to certainly assume it further investigations are needed.

17.
Br J Haematol ; 145(2): 190-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19222471

ABSTRACT

An investigation of 22 new patients with Shwachman-Diamond syndrome (SDS) and the follow-up of 14 previously reported cases showed that (i) clonal chromosome changes of chromosomes 7 and 20 were present in the bone marrow (BM) of 16 out of 36 cases, but if non-clonal changes were taken into account, the frequency of anomalies affecting these chromosomes was 20/36: a specific SDS karyotype instability was thus confirmed; (ii) the recurrent isochromosome i(7)(q10) did not include short arm material, whereas it retained two arrays of D7Z1 alphoid sequences; (iii) the deletion del(20)(q11) involved the minimal region of deletion typical of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML); (iv) only one patient developed MDS, during the rapid expansion of a BM clone with a chromosome 7 carrying additional material on the short arms; (v) the acquisition of BM clonal chromosome anomalies was age-related. We conclude that karyotype instability is part of the natural history of SDS through a specific mutator effect, linked to lacking SBDS protein, with consequent clonal anomalies of chromosomes 7 and 20 in BM, which may eventually promote MDS/AML with the patients' ageing.


Subject(s)
Aging/genetics , Chromosome Aberrations , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Adolescent , Adult , Bone Marrow Cells/ultrastructure , Child , Child, Preschool , Chromosome Breakage , Chromosomes, Human, Pair 20 , Chromosomes, Human, Pair 7 , DNA Mutational Analysis , Disease Progression , Female , Follow-Up Studies , Humans , In Situ Hybridization, Fluorescence , Isochromosomes , Karyotyping , Male , Proteins/genetics , Young Adult
20.
Genes Chromosomes Cancer ; 45(4): 375-82, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16382447

ABSTRACT

An investigation of 14 patients with Shwachman syndrome (SS), using standard and molecular cytogenetic methods and molecular genetic techniques, showed that (1) the i(7)(q10) is not, or not always, an isochromosome but may arise from a more complex mechanism, retaining part of the short arm; (2) the i(7)(q10) has no preferential parental origin; (3) clonal chromosome changes, such as chromosome 7 anomalies and del(20)(q11), may be present in the bone marrow (BM) for a long time without progressing to myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML); (4) the del(20)(q11) involves the minimal region of deletion typical of MDS/AML; (5) the rate of chromosome breaks is not significantly higher than in controls, from which it is concluded that SS should not be considered a breakage syndrome; (6) a specific kind of karyotype instability is present in SS, with chromosome changes possibly found in single cells or small clones, often affecting chromosomes 7 and 20, in the BM. Hence, we have confirmed our previous hypothesis that the SS mutation itself implies a mutator effect that is responsible for MDS/AML through these specific chromosome anomalies. This conclusion supports the practice of including cytogenetic monitoring in the follow-up of SS patients.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 20/genetics , Chromosomes, Human, Pair 7/genetics , Myelodysplastic Syndromes/genetics , Proteins/genetics , Adolescent , Adult , Case-Control Studies , Child , Chromosome Breakage , DNA Mutational Analysis , Female , Humans , In Situ Hybridization, Fluorescence , Male , Myelodysplastic Syndromes/etiology , Syndrome , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...