Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 35(13): 2124-6, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20596167

ABSTRACT

We measure the transmission of IR radiation through double-layer metal films with periodic arrays of subwavelength holes. When the two metal films are placed in sufficiently close proximity, two types of transmission resonances emerge. For the surface plasmon mode, the electromagnetic field is concentrated on the outer surface of the entire metallic layer stack. In contrast, for the guided mode, the field is confined to the gap between the two metal layers. Our measurements indicate that, as the two layers are laterally shifted from perfect alignment, the peak transmission frequency of the guided mode decreases significantly, while that of the surface plasmon mode remains largely unchanged, in agreement with numerical calculations.

2.
Opt Lett ; 33(13): 1410-2, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18594648

ABSTRACT

We demonstrate that the phase of light transmitted through double-layer subwavelength metallic slit arrays can be controlled through lateral shift of the two layers. Our samples consist of two aluminum layers, each of which contains an array of subwavelength slits. The two layers are placed in sufficient proximity to allow coupling of the evanescent fields at resonance. By changing the lateral shift between the layers from zero to half the period, the phase of the transmitted electromagnetic field is increased by pi, while the transmitted intensity remains high. Such a controllable phase delay could open new capabilities for nanophotonic devices that cannot be achieved with single-layer structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...