Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38152082

ABSTRACT

Background: Domiciliary spirometry (DS) is a novel tool that is widely employed in the assessment of respiratory disease. We assessed real-world feasibility, effectiveness and value of a physiologist-led home spirometry programme in patients with treatment-refractory severe asthma. Methods: Patients were referred and provided with a hand-held DS device. Patients completed baseline measurements in a physiologist-led virtual clinic and were instructed to provide further values during any periods of respiratory symptoms. Outcome measures included prevalence of new obstructed events, DS adherence and uptake of this approach. Results: 112 patients were enrolled from November 2020 to January 2023. 102 individuals, mean±sd age 44±13 years (86% female) with median (IQR) forced expiratory volume in 1 s % predicted 88% (77-97%), successfully recorded baseline spirometry values. During follow-up (24 months), 11 (11%) were identified with new obstructive spirometry and were subsequently able to be commenced on biologic therapy. Patient engagement was poor with median (IQR) of 4 (2-6) attempts of contact made before baseline values were recorded, and 2 (1-3) attempts required to record technically acceptable values. Continued DS use was suboptimal; 34% failed to use their device after baseline and only 10% continued at the end of the study period. The cost of DS measurements was greater than a single hospital-based visit but enables multiple event capture. Conclusion: Overall, DS measurement uptake was poor, with a minority of patients continuing to use the device at the end of the study period. However, for those that engage, DS provides an alternative approach to traditional hospital-based spirometry measurements that can alter clinical management.

2.
Bioorg Med Chem Lett ; 32: 127661, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33160023

ABSTRACT

We previously reported medicinal chemistry efforts that identified MK-5204, an orally efficacious ß-1,3-glucan synthesis inhibitor derived from the natural product enfumafungin. Further extensive optimization of the C2 triazole substituent identified 4-pyridyl as the preferred replacement for the carboxamide of MK-5204, leading to improvements in antifungal activity in the presence of serum, and increased oral exposure. Reoptimizing the aminoether at C3 in the presence of this newly discovered C2 substituent, confirmed that the (R) t-butyl, methyl aminoether of MK-5204 provided the best balance of these two key parameters, culminating in the discovery of ibrexafungerp, which is currently in phase III clinical trials. Ibrexafungerp displayed significantly improved oral efficacy in murine infection models, making it a superior candidate for clinical development as an oral treatment for Candida and Aspergillus infections.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Candida albicans/drug effects , Glycosides/chemistry , Triterpenes/chemistry , beta-Glucans/metabolism , Administration, Oral , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacokinetics , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Candidiasis/drug therapy , Disease Models, Animal , Glycosides/pharmacokinetics , Glycosides/pharmacology , Glycosides/therapeutic use , Half-Life , Mice , Structure-Activity Relationship , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , Triterpenes/therapeutic use
3.
Bioorg Med Chem Lett ; 30(17): 127357, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738971

ABSTRACT

Our previously reported efforts to produce an orally active ß-1,3-glucan synthesis inhibitor through the semi-synthetic modification of enfumafungin focused on replacing the C2 acetoxy moiety with an aminotetrazole and the C3 glycoside with a N,N-dimethylaminoether moiety. This work details further optimization of the C2 heterocyclic substituent, which identified 3-carboxamide-1,2,4-triazole as a replacement for the aminotetrazole with comparable antifungal activity. Alkylation of either the carboxamidetriazole at C2 or the aminoether at C3 failed to significantly improve oral efficacy. However, replacement of the isopropyl alpha amino substituent with a t-butyl, improved oral exposure while maintaining antifungal activity. These two structural modifications produced MK-5204, which demonstrated broad spectrum activity against Candida species and robust oral efficacy in a murine model of disseminated Candidiasis without the N-dealkylation liability observed for the previous lead.


Subject(s)
Antifungal Agents/chemistry , Triazoles/chemistry , beta-Glucans/metabolism , Administration, Oral , Animals , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida/drug effects , Candidiasis/drug therapy , Disease Models, Animal , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Glycosides/chemistry , Half-Life , Mice , Microbial Sensitivity Tests , Stereoisomerism , Structure-Activity Relationship , Triazoles/metabolism , Triazoles/pharmacology , Triazoles/therapeutic use , Triterpenes/chemistry , beta-Glucans/chemistry
4.
Bioorg Med Chem Lett ; 25(24): 5813-8, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26542966

ABSTRACT

The clinical success of the echinocandins, which can only be administered parentally, has validated ß-1,3-glucan synthase (GS) as an antifungal target. Semi-synthetic modification of enfumafungin, a triterpene glycoside natural product, was performed with the aim of producing a new class of orally active GS inhibitors. Replacement of the C2 acetoxy moiety with various heterocycles did not improve GS or antifungal potency. However, replacement of the C3 glycoside with an aminoether moiety dramatically improved oral pharmacokinetic (PK) properties while maintaining GS and antifungal potency. Installing an aminotetrazole at C2 in conjunction with an N-alkylated aminoether at C3 produced derivatives with significantly improved GS and antifungal potency that exhibited robust oral efficacy in a murine model of disseminated candidiasis.


Subject(s)
Antifungal Agents/chemistry , Glycosides/chemistry , Triterpenes/chemistry , beta-Glucans/chemistry , Administration, Oral , Animals , Antifungal Agents/pharmacokinetics , Antifungal Agents/therapeutic use , Aspergillus fumigatus/drug effects , Candida albicans/drug effects , Candidiasis/drug therapy , Candidiasis/veterinary , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Half-Life , Mice , Microbial Sensitivity Tests , Structure-Activity Relationship , Terpenes/chemistry , beta-Glucans/pharmacokinetics , beta-Glucans/therapeutic use
5.
Bioorg Med Chem Lett ; 22(22): 6811-6, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22672801

ABSTRACT

Orally bioavailable inhibitors of ß-(1,3)-D-glucan synthase have been pursued as new, broad-spectrum fungicidal therapies suitable for treatment in immunocompromised patients. Toward this end, a collaborative medicinal chemistry program was established based on semisynthetic derivatization of the triterpenoid glycoside natural product enfumafungin in order to optimize in vivo antifungal activity and oral absorption properties. In the course of these studies, it was hypothesized that the pharmacokinetic properties of the semisynthetic enfumafungin analog 3 could be improved by tethering the alkyl groups proximal to the basic nitrogen of the C3-aminoether side chain into an azacyclic system, so as to preclude oxidative N-demethylation. The results of this research effort are disclosed herein.


Subject(s)
Antifungal Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Glucosyltransferases/antagonists & inhibitors , Glycosides/chemistry , Triterpenes/chemistry , Administration, Oral , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Candida albicans/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Glucosyltransferases/metabolism , Glycosides/chemical synthesis , Glycosides/pharmacokinetics , Half-Life , Mice , Structure-Activity Relationship , Triterpenes/chemical synthesis , Triterpenes/pharmacokinetics
6.
Bioorg Med Chem Lett ; 19(4): 1224-7, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19147347

ABSTRACT

Parnafungins, natural products containing an isoxazolidinone ring, have been isolated from Fusarium larvarum and have been shown to be potent inhibitors of the fungal polyadenosine polymerase. The extraction and analysis of fermentation broths of taxonomically related organisms identified as closely related Fusarium spp. produce not only parnafungin A and B, but also significant quantities of two related components. These members of the paranfungin family of natural products have been isolated and the structure of each has been elucidated. While structurally analogous to parnafungin A, parnafungin C is further elaborated by methylation of a phenolic hydroxyl group, and parnafungin D has both the methyl phenol ether as well as an epoxide in the xanthone ring system. Parnafungin C and D have potent, broad spectrum antifungal activity and also have been shown to target fungal mRNA cleavage and polyadenylation.


Subject(s)
Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Biological Products/isolation & purification , Biological Products/pharmacology , Fusarium/chemistry , Oxazolidinones/isolation & purification , Oxazolidinones/pharmacology , Antifungal Agents/chemistry , Biological Products/chemistry , Candida albicans/drug effects , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oxazolidinones/chemistry
7.
Chem Biol ; 15(4): 363-74, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18420143

ABSTRACT

Natural products provide an unparalleled source of chemical scaffolds with diverse biological activities and have profoundly impacted antimicrobial drug discovery. To further explore the full potential of their chemical diversity, we survey natural products for antifungal, target-specific inhibitors by using a chemical-genetic approach adapted to the human fungal pathogen Candida albicans and demonstrate that natural-product fermentation extracts can be mechanistically annotated according to heterozygote strain responses. Applying this approach, we report the discovery and characterization of a natural product, parnafungin, which we demonstrate, by both biochemical and genetic means, to inhibit poly(A) polymerase. Parnafungin displays potent and broad spectrum activity against diverse, clinically relevant fungal pathogens and reduces fungal burden in a murine model of disseminated candidiasis. Thus, mechanism-of-action determination of crude fermentation extracts by chemical-genetic profiling brings a powerful strategy to natural-product-based drug discovery.


Subject(s)
Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , Candida albicans/drug effects , Candida albicans/genetics , Drug Evaluation, Preclinical/methods , Polynucleotide Adenylyltransferase/antagonists & inhibitors , Alleles , Amino Acid Sequence , Animals , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Aspergillus fumigatus/drug effects , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/metabolism , Biological Products/chemistry , Biological Products/isolation & purification , Candida albicans/metabolism , Candidiasis/drug therapy , Candidiasis/metabolism , Complex Mixtures/pharmacology , Deoxyadenosines/metabolism , Deoxyadenosines/pharmacology , Drug Resistance, Fungal , Fermentation , Heterozygote , Mice , Microbial Sensitivity Tests , Molecular Sequence Data , Mutation , Polyadenylation/drug effects , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Treatment Outcome
8.
Antimicrob Agents Chemother ; 51(5): 1876-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17325225

ABSTRACT

A Candida krusei strain from a patient with acute myelogenous leukemia that displayed reduced susceptibility to echinocandin drugs contained a heterozygous mutation, T2080K, in FKS1. The resulting Phe655-->Cys substitution altered the sensitivity of glucan synthase to echinocandin drugs, consistent with a common mechanism for echinocandin resistance in Candida spp.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Glucosyltransferases/genetics , Lipoproteins/pharmacology , Peptides, Cyclic/pharmacology , Amino Acid Sequence , Anidulafungin , Candida/enzymology , Candida/genetics , Caspofungin , Drug Resistance, Fungal , Echinocandins , Glucosyltransferases/chemistry , Lipopeptides , Micafungin , Microbial Sensitivity Tests , Molecular Sequence Data , Protein Subunits
9.
Antimicrob Agents Chemother ; 50(6): 2214-6, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16723587

ABSTRACT

Caspofungin inhibits synthesis of beta-D-1,3 glucan, essential to cell walls in Candida and Aspergillus spp., but activity against less common molds is largely uncharacterized. We demonstrate that caspofungin inhibits beta-D-1,3 glucan synthesis and reduces in vitro growth of clinical isolates from the genera Alternaria, Curvularia, Scedosporium, Acremonium, Bipolaris, and Trichoderma.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus fumigatus/drug effects , Fungi/drug effects , Glucosyltransferases/antagonists & inhibitors , Peptides, Cyclic/pharmacology , beta-Glucans/metabolism , Aspergillus fumigatus/genetics , Aspergillus fumigatus/growth & development , Aspergillus fumigatus/isolation & purification , Caspofungin , Echinocandins , Fluorescent Dyes , Fungi/genetics , Fungi/growth & development , Fungi/isolation & purification , In Vitro Techniques , Lipopeptides , Microbial Sensitivity Tests
10.
Microbiology (Reading) ; 147(Pt 2): 383-390, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11158355

ABSTRACT

The sordarin class of natural products selectively inhibits fungal protein synthesis by impairing the function of eukaryotic elongation factor 2 (eEF2). Mutations in Saccharomyces cerevisiae eEF2 or the ribosomal stalk protein rpP0 can confer resistance to sordarin, although eEF2 is the major determinant of sordarin specificity. It has been shown previously that sordarin specifically binds S. cerevisiae eEF2 while there is no detectable binding to eEF2 from plants or mammals, despite the high level of amino acid sequence conservation among these proteins. In both whole-cell assays and in vitro translation assays, the efficacy of sordarin varies among different species of pathogenic fungi. To investigate the basis of sordarin's fungal selectivity, eEF2 has been cloned and characterized from several sordarin-sensitive and -insensitive fungal species. Results from in vivo expression of Candida species eEF2s in S. cerevisiae and in vitro translation and growth inhibition assays using hybrid S. cerevisiae eEF2 proteins demonstrate that three amino acid residues within eEF2 account for the selectivity of this class of compounds. It is also shown that the corresponding residues at these positions in human eEF2 are sufficient to confer sordarin insensitivity to S. cerevisiae identical to that observed with mammalian eEF2.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Peptide Elongation Factor 2/antagonists & inhibitors , Peptide Elongation Factor 2/biosynthesis , Amino Acid Sequence , Candida/classification , Candida/genetics , Candida/growth & development , Candida/metabolism , Cloning, Molecular , Fungal Proteins/biosynthesis , Humans , Indenes , Molecular Sequence Data , Peptide Elongation Factor 2/chemistry , Peptide Elongation Factor 2/genetics , Protein Biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...